Wave speed = frequency * wavelength
Input the numbers into this equation :
Wave speed = 200 * 3
Work it out and you will get the answer :
Wave speed = 600 m/s
Answer:
Part a)
V = 18.16 V
Part b)

Part c)
P = 672 Watt
Part d)
V = 5.84 V
Part e)

Explanation:
Part a)
When battery is in charging mode
then the potential difference at the terminal of the cell is more than its EMF and it is given as

here we have



now we have

Part b)
Rate of energy dissipation inside the battery is the energy across internal resistance
so it is given as



Part c)
Rate of energy conversion into EMF is given as



Now battery is giving current to other circuit so now it is discharging
now we have
Part d)



Part e)
now the rate of energy dissipation is given as



Answer:
0.01 m
Explanation:
Since the speed of light is 3.0×10^8 m/s
Use the equation,
Wavelength = speed ÷ frequency
Wavelength = 3.0×10^8 ÷ 3×10^10
Wavelength = 0.01m
Speed = (distance traveled) / (time to travel the distance).
Strange as it may seem, 'velocity' is completely different.
Velocity doesn't involve the total distance traveled at all.
Instead, 'velocity' is based on 'displacement' ... the distance
between the start-point and end-point, regardless of the route
taken to get there. So the displacement in driving once around
any closed path is zero, because you end up where you started.
Velocity =
(displacement during some time)
divided by
(time for the displacement)
AND the direction from the start-point to the end-point.
For the guy who drove 15 km to his destination in 10 min, and then
back to his starting point in 5 min, (assuming he returned by way of
the same 15-km route):
Speed = (15km + 15km) / (10min + 5min) = (30/15) (km/min)
= 2 km/min.
Velocity = (end location - start position) / (15 min) = Zero .
Answer:28 m
Explanation:
Given
Direction is
North of east i.e.
with x axis
Also ball moved by 33 m
therefore its east component is 33cos58=17.48 m
Northward component 