1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
9

Four of your friends are in new relationships, but only two of these relationships are healthy. Which of your friends are in unh

ealthy relationships that have escalated to a safety risk? Take a look at the chart below to determine the answer: Jessica's partner says/does Kristen's partner says/does Shane's partner says/does Jack's partner says/does Jokes about Jessica's taste in music Prefers to make decisions and plans Asks, "What do you want to do tonight?" Wants Jack to cancel family time to go on a date Does not like Jessica gong out on the weekend Likes to discuss feelings and concerns together Laughs often at mutual jokes Yells to get Jack's attention Says, "Why do you make me so angry sometimes?" Wants to socialize with Kristen's brother and friends Shares new ideas and likes to be right all the time Pushes Jack jokingly Who is in an unhealthy relationship?
Physics
2 answers:
Ne4ueva [31]3 years ago
7 0
Jack and Jessica are in unhealthy relationships
svet-max [94.6K]3 years ago
5 0
Jack and Jessica are unhealthy 

You might be interested in
Two charges are located in the x – y plane. If ????1=−4.10 nC and is located at (x=0.00 m,y=0.600 m) , and the second charge has
faust18 [17]

Answer:

The x-component of the electric field at the origin = -11.74 N/C.

The y-component of the electric field at the origin = 97.41 N/C.

Explanation:

<u>Given:</u>

  • Charge on first charged particle, q_1=-4.10\ nC=-4.10\times 10^{-9}\ C.
  • Charge on the second charged particle, q_2=3.80\ nC=3.80\times 10^{-9}\ C.
  • Position of the first charge = (x_1=0.00\ m,\ y_1=0.600\ m).
  • Position of the second charge = (x_2=1.50\ m,\ y_2=0.650\ m).

The electric field at a point due to a charge q at a point r distance away is given by

\vec E = \dfrac{kq}{|\vec r|^2}\ \hat r.

where,

  • k = Coulomb's constant, having value \rm 8.99\times 10^9\ Nm^2/C^2.
  • \vec r = position vector of the point where the electric field is to be found with respect to the position of the charge q.
  • \hat r = unit vector along \vec r.

The electric field at the origin due to first charge is given by

\vec E_1 = \dfrac{kq_1}{|\vec r_1|^2}\ \hat r_1.

\vec r_1 is the position vector of the origin with respect to the position of the first charge.

Assuming, \hat i,\ \hat j are the units vectors along x and y axes respectively.

\vec r_1=(0-x_1)\hat i+(0-y_1)\hat j\\=(0-0)\hat i+(0-0.6)\hat j\\=-0.6\hat j.\\\\|\vec r_1| = 0.6\ m.\\\hat r_1=\dfrac{\vec r_1}{|\vec r_1|}=\dfrac{0.6\ \hat j}{0.6}=-\hat j.

Using these values,

\vec E_1 = \dfrac{(8.99\times 10^9)\times (-4.10\times 10^{-9})}{(0.6)^2}\ (-\hat j)=1.025\times 10^2\ N/C\ \hat j.

The electric field at the origin due to the second charge is given by

\vec E_2 = \dfrac{kq_2}{|\vec r_2|^2}\ \hat r_2.

\vec r_2 is the position vector of the origin with respect to the position of the second charge.

\vec r_2=(0-x_2)\hat i+(0-y_2)\hat j\\=(0-1.50)\hat i+(0-0.650)\hat j\\=-1.5\hat i-0.65\hat j.\\\\|\vec r_2| = \sqrt{(-1.5)^2+(-0.65)^2}=1.635\ m.\\\hat r_2=\dfrac{\vec r_2}{|\vec r_2|}=\dfrac{-1.5\hat i-0.65\hat j}{1.634}=-0.918\ \hat i-0.398\hat j.

Using these values,

\vec E_2= \dfrac{(8.99\times 10^9)\times (3.80\times 10^{-9})}{(1.635)^2}(-0.918\ \hat i-0.398\hat j) =-11.74\ \hat i-5.09\ \hat j\  N/C.

The net electric field at the origin due to both the charges is given by

\vec E = \vec E_1+\vec E_2\\=(102.5\ \hat j)+(-11.74\ \hat i-5.09\ \hat j)\\=-11.74\ \hat i+(102.5-5.09)\hat j\\=(-11.74\ \hat i+97.41\ \hat j)\ N/C.

Thus,

x-component of the electric field at the origin = -11.74 N/C.

y-component of the electric field at the origin = 97.41 N/C.

4 0
3 years ago
If the truck has a mass of 2,000 kilograms , what's its momentum?(v=35 m/s)
katen-ka-za [31]

Answer:

\boxed {\boxed {\sf  70,000 \ kg*m/s}}

Explanation:

Momentum is the product of mass and velocity.

p=m*v

The mass of the truck is 2,000 kilograms and the velocity is 35 meters per second.

m= 2000 \ kg \\v= 35 \ m/s

Substitute the values into the formula and multiply.

p= 2000 \ kg * 35 \ m/s \\p= 70,000 \ kg*m/s

The truck's momentum is <u>70,000 kilograms meters per second.</u>

8 0
3 years ago
If an electron is accelerated from rest through a potential difference of 1.60 x 102V, what is its de Broglie wavelength
Ivahew [28]

Answer:

0.09 x10^-10m

Explanation:

Using wavelength=( 12.27 A)/√V

= 12.27 x 10^-10/ √1.6x10^2

= 0.09x10^-10m

7 0
3 years ago
What are the output waveforms of the following waves, after passing through a transformer?
Ber [7]
The output waveforms after passing through the transformer actually depend on the type of transformer used. It could either be a step-up transformer (steps voltage up), or a step-down transformer (steps voltage down). Both transformers have an output voltage in a form of a sine wave.
8 0
3 years ago
Assuming a 8 kilogram bowling ball moving at 2 m/s bounces off a spring at the same speed that had before bouncing what is the a
Naya [18.7K]

a) 32 kg m/s

Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

p_i = m u = (8 kg)(2 m/s)=16 kg m/s

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

p_{fB}=m v_b =(8 kg)(-2 m/s)=-16 kg m/s

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

p_f = p_{fB}+p_{fS}

where p_{fS} is the momentum of the spring. For the conservation of momentum,

p_i = p_f\\p_i = p_{fB}+p_{fS}\\p_{fS}=p_i -p_{fB}=16 kg m/s -(-16 kg m/s)=32 kg m/s


b) -32 kg m/s

The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

\Delta p=p_{fb}-p_i=-16 kg m/s - 16 kg m/s=-32 kg m/s


c) 64 N

The change in momentum is equal to the product between the average force and the time of the interaction:

\Delta p=F \Delta t

Since we know \Delta t=0.5 s, we can find the magnitude of the force:

F=\frac{\Delta p}{\Delta t}=\frac{-32 kg m/s}{0.5 s}=-64 N

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.


d) The force calculated in the previous step (64 N) is larger than the force of 32 N.

5 0
3 years ago
Other questions:
  • 1 point
    8·1 answer
  • An ac generator with Em = 223 V and operating at 399 Hz causes oscillations in a series RLC circuit having R = 222 Ω, L = 147 mH
    12·1 answer
  • Human blood has a density of approximately 1.05×10'3 kg/m'3 .Use this to estimate the difference in blood pressure between the b
    9·1 answer
  • 10 points
    15·1 answer
  • If you had a rock with a volume of 237 ml and a density of 4.52 g/ml how much mass would it have?
    10·2 answers
  • Does a light bulb at a temperature of 2500K produce as white a light as the sun at 6000K
    5·1 answer
  • you have two solid substances that look the same. What measurements would you take and which tests would you preform to determin
    10·1 answer
  • What are the characteristics of low energy waves? (2 points)
    13·1 answer
  • Why do you think it is helpful for the widest part of a leaf to face the sky
    9·1 answer
  • A solid sphere of radius 40.0cm has a total positive charge of 26.0μC uniformly distributed throughout its volume. Calculate the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!