Ba²⁺ + 2Cl⁻ + 2H⁺ + SO₄²⁻ = BaSO₄ (precipitate) + 2H⁺ + 2Cl⁻
Ba²⁺ + SO₄²⁻ = BaSO₄
Answer:
moles H₂O = 10
Explanation:
The mass of Na₂CO₃⋅xH₂O is 3.837 g and the mass of Na₂CO₃ is 1.42g
Therefore the mass of xH₂O is 3.837 - 1.42 = 2.417 g
The molar mass of Na₂CO₃ is 106 g/mol and for H₂O is 18 g/mol
The moles of Na₂CO₃ and H₂O in the sample are:
Na₂CO₃ = 1.42 / 106 = 0.01340 moles
H₂O = 2.417 / 18 = 0.1343
Now using rule of three :
1 mole of Na₂CO₃ has x moles of H₂O
0.01340 moles of Na₂CO₃ has 0.1343 moles of H₂O
x = 1 * 0.1343 / 0.01340 = 10
Answer:
A
Explanation:
To label an element correctly using a combination of the symbol, mass number and atomic number furnishes some important information about the element.
We can obtain these information from the element provided that correct labeling of the element is presented. Firstly, after writing the symbol of the element, the atomic number is placed as a subscript on the left while the mass number of the atomic mass is placed as a superscript on the same left.
Looking at the question asked, we have the element symbol in the correct position as Ca, with 42 also in the correct position which is the mass number. The third number which is 20 is thus the atomic number of the element.
Answer: X3+
Explanation:
Every atom aim to achieve stability by receiving electrons or giving their valence electrons in order to have a complete outermost shell of 2 (duplet) or 8 (octet structure).
In this case, the atom X will easily give off its three valence electrons to another atom(s), thereby forming a trivalent positive ion (X3+) with a stable duplet or octet structure (i.e an outermost shell with 2 or 8 electrons).
X --> X3+ + 3e-
Thus, due to the give away of three electrons (3e-), the atom X becomes X3+.
Metallic bonding
The particles in a metal are held together by metallic bonds.
High melting and boiling points
Metallic bonds are strong and a lot of energy is needed to break them. This is why metals have high melting points and boiling points.
Conducting electricity
Metals contain electrons that are free to move in the metal structure, carrying charge from place to place and allowing metals to conduct electricity well.
Metallic bonding - Higher tier
Metallic bonding is the strong attraction between closely packed positive metal ions and a 'sea' of delocalised electrons.