Answer:
- 1273.02 kJ.
Explanation:
This problem can be solved using Hess's Law.
Hess's Law states that <em>regardless of the multiple stages or steps of a reaction, the total enthalpy change for the reaction is the sum of all changes. This law is a manifestation that enthalpy is a state function.</em>
- We should modify the given 3 equations to obtain the proposed reaction:
<em>6C(s) + 6H₂(g) + 3O₂(g) → C₆H₁₂O₆(s),</em>
<em></em>
- We should multiply the first equation by (6) and also multiply its ΔH by (6):
6C(s) + 6O₂(g) → 6CO₂(g), ∆H₁ = (6)(–393.51 kJ) = - 2361.06 kJ,
- Also, we should multiply the second equation and its ΔH by (6):
6H₂(g) + 3O₂(g) → 6H₂O(l), ∆H₂ = (6)(–285.83 kJ) = - 1714.98 kJ.
- Finally, we should reverse the first equation and multiply its ΔH by (- 1):
6CO₂(g) + H₂O(l) → C₆H₁₂O₆(s) + 6O₂(g), ∆H₃ = (-1)(–2803.02 kJ) = 2803.02 kJ.
- By summing the three equations, we cam get the proposed reaction:
<em>6C(s) + 6H₂(g) + 3O₂(g) → C₆H₁₂O₆(s),</em>
<em></em>
- And to get the heat of reaction for the production of glucose, we can sum the values of the three ∆H:
<em>∆Hrxn = ∆H₁ + ∆H₂ + ∆H₃ =</em> (- 2361.06 kJ) + (- 1714.98 kJ) + (2803.02 kJ) = <em>- 1273.02 kJ.</em>
Refer to the table below. Credits to https://terpconnect.umd.edu/~wbreslyn/chemistry/naming/IonicCharge2.jpg
Cations with (+ ) charges lose electrons in order to obtain an octet (8 valence electrons) when they ionically bond with another ion. We're looking for the ions that loses electrons here. So, from the table:
Al 3+ , S 2- , O 2-, Ag + , Ne ( noble gas, no charge)
Since Al and Ag has (+) charges, they are going to lose electrons to form ionic bonds with other atoms.
Explanation:
joesjejj2kwkek726k46m6em6ms6m26m36m7mem7m6x7mxbdgshndkdjd
Answer:
to be precise in the calculations
Explanation: for example your cell phone has a gps inside it, the gps is responsible for providing direction data like a compass, if the equipment is not calibrated, the gps will not find the correct direction.
Ammonia compounds are bases in aqueous solution according to brønsted–lowry theory.
<h3>What are bases?</h3>
A base is a substance that can neutralize the acid by reacting with hydrogen ions.
Ammonia compounds are based on an aqueous solution according to brønsted–lowry theory because the water molecule donates a hydrogen ion to the ammonia, it is the Brønsted-Lowry acid, while the ammonia molecule which accepts the hydrogen ion is the Brønsted-Lowry base. Thus, ammonia acts as a base in both the Arrhenius sense and the Brønsted-Lowry sense.
Hence, ammonia compounds are based on an aqueous solution according to brønsted–lowry theory.
Learn more about the bases here:
brainly.com/question/16387395
#SPJ1