Dissolver is the answer i think because that is what disovling means
Answer:
Approximately
, assuming that this acid is monoprotic.
Explanation:
Assume that this acid is monoprotic. Let
denote this acid.
.
Initial concentration of
without any dissociation:
.
After
of that was dissociated, the concentration of both
and
(conjugate base of this acid) would become:
.
Concentration of
in the solution after dissociation:
.
Let
,
, and
denote the concentration (in
or
) of the corresponding species at equilibrium. Calculate the acid dissociation constant
for
, under the assumption that this acid is monoprotic:
.
H........................................
Yo sup??
The answer to your question is option c ie
c.9
the rest 12 are under non essential as they are produced by our body itself
Hope this helps.
Answer:
See images attached and explanation
Explanation:
I have drawn three possible structures of ZX2. We have to remember that the shapes of molecules could be predicted on the basis of the Valence shell electron pair repulsion theory.
The number of electrons on the valence shell of the central atom determines the shape of the molecule. We have also been told that X is not hydrogen.
If the two X atoms are arranged at a bond angle of 180 degrees, we could have either structure I or II. We will have these structures if the Z atom is sp2 hybridized.
Similarly, if the Z atom is sp3 hybridized, we may have structure III in which the molecule is bent with a bond angle less than 109 degrees. This may result from the presence of a lone pair on Z.
Note that all these structures obey the octet rule.