<em>B</em><em> </em><em>i</em><em>s</em><em> </em><em>r</em><em>i</em><em>g</em><em>h</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>t</em><em>h</em><em>i</em><em>n</em><em>k</em><em> </em><em>b</em><em>r</em><em>o</em><em>/</em><em>s</em><em>i</em><em>s</em>
Answer:
Answer is explained in the explanation section below.
Explanation:
Note: This question is not complete and lacks necessary data to solve. However, I have found a similar question and I will be using its data to solve this question for the sake of understanding and concept.
Solution:
Equilibrium Reaction:
CaO(s) + H2O(g) -->Ca(OH)2(s)
We need to find the reaction quotient for this question:
Q =
Here, only the pressure of the gaseous reactant will be used and here H20 is the only reactant which is gaseous.
And we are given that, vapor pressure of water is = 0.106 mmHg
So,
Now, we need to convert it into atm
so, 1atm = 760 mmHg
0.106 mmHg = 0.106/760 atm
0.106 mmHg = 1.394 x
atm
Plugging in the values in the equation, we get:
Q =
Q = 
Q = 7173.60 
By space travel.
Or aeroplanes.
Whichever one is in your choices
P1V1=4P1V2
V2/V1= P1/4P1
V2/V1= 1/4
V2=1/4*V1
volume will decrease by factor 1/4
Answer: The percent composition of oxygen is 54.5%
Explanation:
Below I have attached my work through, but essentially the percent composition relies on finding the mass of the oxygens and dividing it by the mass of the whole compound. The masses of the elements can be found on the periodic table and added together to get a mass of the whole compound- ascorbic acid. Then, you turn this proportion into a percent by multiplying by 100%.