Answer:
f = 3.09 Hz
Explanation:
This is a simple harmonic motion exercise where the angular velocity is
w² =
to find the constant (k) of the spring, we use Hooke's law with the initial data
F = - kx
where the force is the weight of the body that is hanging
F = W = m g
we substitute
m g = - k x
k =
we calculate
k =
k = 3.769 10² m
we substitute in the first equation
w² =
w = 19.415 rad / s
angular velocity and frequency are related
w = 2πf
f =
f = 19.415 / 2pi
f = 3.09 Hz
OMG ITS B ITS B I HOPE I HELPED U
The ability of solid rock to flow is called Plasticity.
Plasticity is the deformation of a solid mateial which resulted in non reversible changes of shape in response to applied force.
Another example of plasticity is when you bend metal through a forcer force to create an art or kitchen set
(a) The free body of all the forces include, frictional force, weight of the box acting perpendicular and another acting parallel to the plane.
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
<h3>
Free body diagram</h3>
The free body diagram of all the forces on the box is obtained by noting the upward force and downward forces on the box as shown below;
/ W2
Ф → Ff
↓W1
where;
- Ff is the frictional force resisting the down motion of the box
- W1 is the perpendicular component of the box weight = Wcos(33)
- W2 is the parallel component of the box weight = Wsin(33)
(b) When the box is sliding down, the frictional force acts towards the right.
(c) When the box slides up, the direction of the frictional force changes, it acts towards the left.
Learn more about free body diagram of inclined objects here: brainly.com/question/4176810
Answer:
0.78 m
Explanation:
The relationship between wavelength and frequency of a wave is given by
![v=f \lambda](https://tex.z-dn.net/?f=v%3Df%20%5Clambda)
where
v is the speed of the wave
f is the frequency
is the wavelength
For the sound wave in this problem, we have
is the frequency
v = 344 m/s is the speed of sound in air
Substituting into the equation and re-arranging it, we find the wavelength:
![\lambda=\frac{v}{f}=\frac{344 m/s}{440 Hz}=0.78 m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7Bv%7D%7Bf%7D%3D%5Cfrac%7B344%20m%2Fs%7D%7B440%20Hz%7D%3D0.78%20m)