Answer:
The tension on the string is
Explanation:
From the question we are told that
The mass of the rock is 
The density of the rock is
Generally the volume of the rock is mathematically evaluated as

substituting values


The volume of the rock immersed in water is
substituting values


mass of water been displaced by the this volume is
According to Archimedes principle
=> 

The weight of the water displace is



The actual weight of the rock is

The tension on the string is
substituting values
Answer:
If all these three charges are positive with a magnitude of
each, the electric potential at the midpoint of segment
would be approximately
.
Explanation:
Convert the unit of the length of each side of this triangle to meters:
.
Distance between the midpoint of
and each of the three charges:
Let
denote Coulomb's constant (
.)
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
Electric potential due to the charge at
:
.
While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.
Hence, the electric field at the midpoint of
due to all these three charges would be:
.
Answer:
(a). The path length is 3.09 m at 30°.
(b). The path length is 188.4 m at 30 rad.
(c). The path length is 1111.5 m at 30 rev.
Explanation:
Given that,
Radius = 5.9 m
(a). Angle 
We need to calculate the angle in radian

We need to calculate the path length
Using formula of path length



(b). Angle = 30 rad
We need to calculate the path length


(c). Angle = 30 rev
We need to calculate the angle in rad


We need to calculate the path length


Hence, (a). The path length is 3.09 m at 30°.
(b). The path length is 188.4 m at 30 rad.
(c). The path length is 1111.5 m at 30 rev.
energy never disappears, for example, if you give some kinetic energy to a ball and it stops few seconds later, friction steals this energy to ground which ball was going on. "Law of Conservation of Energy" tell us that energy can't disappear