Answer: The image from the question has the correct answers.
Explanation:
As summarized in the attached table.
Answer:
The pH is equal to 4.41
Explanation:
Since HClO is a weak acid, its dissociation in aqueous medium is:
HClO ⇄ ClO- + H+
start: 0.05 0 0
change -x +x +x
balance 0.05-x x x
As it is a weak acid it dissociates very little, in its ClO- and H + ions, so the change is negative, where x is a degree of dissociation.
the acidity constant when equilibrium is reached is equal to:
![Ka=\frac{[ClO-]*[H+]}{[HClO]}=\frac{x*x}{0.05-x}=3x10^{-8}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BClO-%5D%2A%5BH%2B%5D%7D%7B%5BHClO%5D%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.05-x%7D%3D3x10%5E%7B-8%7D)
The 0.05-x fraction can be approximated to 0.05, because the ionized fraction (x) is very small, therefore we have:

clearing the x and calculating its value we have:
![x=3.87x10^{-5}=[H+]=[ClO-]](https://tex.z-dn.net/?f=x%3D3.87x10%5E%7B-5%7D%3D%5BH%2B%5D%3D%5BClO-%5D)
the pH can be calculated by:
![pH=-log[H+]=-log[3.87x10^{-5}]=4.41](https://tex.z-dn.net/?f=pH%3D-log%5BH%2B%5D%3D-log%5B3.87x10%5E%7B-5%7D%5D%3D4.41)
Answer: Thus the new volume of the gas is 530 ml
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 740 torr
= final pressure of gas = 760 torr
= initial volume of gas = 500 ml
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Thus the new volume of the gas is 530 ml
Answer:
Before we get into the first law of thermodynamics we need to understand the relation between heat and work and the concept of internal energy. Just like mass, energy is always conserved i.e. it can neither be created nor destroyed but it can be transformed from one form to another. Internal energy is a thermodynamic property of the system that refers to the energy associated with the molecules of the system which includes kinetic energy and potential energy.
Whenever a system goes through any change due to interaction of heat, work and internal energy, it is followed by numerous energy transfer and conversions. However, during these transfers, there is no net change in the total energy.
Similarly, if we look at the first law of thermodynamics it affirms that heat is a form of energy. What it means is that the thermodynamic processes are governed by the principle of conservation of energy. The first law of thermodynamics is also sometimes referred to as the Law of Conservation of Energy
Explanation:
First let us compute for the number of moles of butane
(molar mass = 58.12 g/mol)
number of moles = 145 g / (58.12 g/mol) = 2.49 mol
<span>We use the ideal
gas equation to calculate the volume:</span>
<span> V = n R T / P</span>
V = 2.49 mol * 62.36367 L torr / mol K * 308.15 K / 745
torr
<span>V = 64.35 L</span>