Answer:
D . Sound energy
Explanation:
When the strings of a violin vibrate it produces sound which is sound energy. Due to the vibration of the strings the air present near the strings also vibrate in resonance with the strings. This compreesion and decompression's produced in the air is nothing but the sound. So the form of energy given off by the vibrating strings of the violin is Sound energy.
I think it is maria but i am more sure than wondering
Half mass car because it's traveling faster
Answer:
a) dh/dt = -44.56*10⁻⁴ cm/s
b) dr/dt = -17.82*10⁻⁴ cm/s
Explanation:
Given:
Q = dV/dt = -35 cm³/s
R = 1.00 m
H = 2.50 m
if h = 125 cm
a) dh/dt = ?
b) dr/dt = ?
We know that
V = π*r²*h/3
and
tan ∅ = H/R = 2.5m / 1m = 2.5 ⇒ h/r = 2.5
⇒ h = (5/2)*r
⇒ r = (2/5)*h
If we apply
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = 3*35/π = 105/π ⇒ d(r²*h)/dt = -105/π
a) if r = (2/5)*h
⇒ d(r²*h)/dt = d(((2/5)*h)²*h)/dt = (4/25)*d(h³)/dt = -105/π
⇒ (4/25)(3*h²)(dh/dt) = -105/π
⇒ dh/dt = -875/(4π*h²)
b) if h = (5/2)*r
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = d(r²*(5/2)*r)/dt = (5/2)*d(r³)/dt = -105/π
⇒ (5/2)*(3*r²)(dr/dt) = -105/π
⇒ dr/dt = -14/(π*r²)
Now, using h = 125 cm
dh/dt = -875/(4π*h²) = -875/(4π*(125)²)
⇒ dh/dt = -44.56*10⁻⁴ cm/s
then
h = 125 cm ⇒ r = (2/5)*h = (2/5)*(125 cm)
⇒ r = 50 cm
⇒ dr/dt = -14/(π*r²) = - 14/(π*(50)²)
⇒ dr/dt = -17.82*10⁻⁴ cm/s
We can use the equation of state for an ideal gas to answer the question:

or, by rewriting it,

where p is the gas pressure, V its volume, T its temperature, n the number of moles of the gas and R the gas constant.
When the gas is sprayed from the can into the room, its volume V has increased, while n (the number of moles of the gas) stayed the same. Since R is a constant and the temperature T also stayed constant, if we look at the formula we see that the numerator didn't change, while the denominator (V) has increased, so the pressure of the gas has decreased.