Answer:125.84g
Explanation:Sucrose is dissacharides an organic compound in the class of carbonhydrate with the chemical formula C11H22O11.molar concentration is given by number of moles/Volume,this implies that moles=molar concentration ×Volume=0.130M×2.75L=0.3575moles.
Furthermore,number of moles=Mass of Sucrose/molecular Mass of Sucrose.
From it's formular C11H22O11, molecular Mass is the addition of the mass number which is 12 for C,2 for H and 16 for oxygen,O.so molecular Mass of Sucrose is (12×11)+(2×22)+(16×11)=352.
So mass =moles ×molecular mass=0.3575moles×352g/moles=125.84g
Answers: -
For high kinetic energy, the object must have high speed of movement.
1) An airplane has a lot of kinetic energy. Airplanes move at high speed and thus posses a lot of kinetic energy.
2) A bullet from a gun has a lot of kinetic energy due to the high speed of bullet.
3) A formula one car moving at high speeds have a lot of kinetic energy.
4) A train moving at high speed has lots of kinetic energy.
5) An asteroid has a lot of kinetic energy due to it's high speed.
6) A roller coaster moving at high speeds have a lot of kinetic energy.
7) A missile fired from a fighter plane has lots of kinetic energy.
<span>Scientific endeavors is basically all the things that would contribute to the process of achieving a certain scientific knowledge, from the initial observation, up to the point until we can hold that certain thing as acknowledged truth. So,
All scientific endeavors are supported by evidence.
All scientific endeavors are a systemic process.
All scientific endeavors involve observation.
All scientific endeavors involve experimentation.
All scientific endeavors involve the collection of information.
</span>
The best description of Ernest Rutherford's experiment is letter C. The positively charged particles were fired through a gold foil. Most of these particles went right through, while others bounced back. This experiment led to the discovery of the nucleus.
Answer:
Mass of chemical = 1.5 mg
Explanation:
Step 1: First calculate the concentration of the stock solution required to make the final solution.
Using C1V1 = C2V2
C1 = concentration of the stock solution; V1 = volume of stock solution; C2 = concentration of final solution; V2 = volume of final solution
C1 = C2V2/V1
C1 = (6 * 25)/ 0.1
C1 = 1500 ng/μL = 1.5 μg/μL
Step 2: Mass of chemical added:
Mass of sample = concentration * volume
Concentration of stock = 1.5 μg/μL; volume of stock = 10 mL = 10^6 μL
Mass of stock = 1.5 μg/μL * 10^6 μL = 1.5 * 10^6 μg = 1.5 mg
Therefore, mass of sample = 1.5 mg