Answer: (a) Neon, Nitrogen; (b) Neon, Nitrogen; (c) Neon is lower than Nitrogen; (d) It doesn't affect;
Explanation: The kinetic-molecular theory studies the behavior of particles under pre-determinated situation. In cases of gases, the particles moving around colliding with each other and the walls of the container, without loss of energy. In the case in question, all the parameters are the same (same temperature, volume and pressure), except for the gases, which has different molar masses. In this sense, Neon has lower average speed due to its molar mass being higher, which means, its particles moves slower for being heavier. Related to pressure, as velocity is lower, it collides less with the walls of the tank, and so pressure is lower. For density, it doesn't affect the behavior of the system nor the kinetic energy.
Hey You!
The Correct Answer Is: True.
I Really Hope This Helped You, Good Luck With Your Studies! =)
The molecular formula of sucrose is - C₁₂H₂₂O₁₁
molecular mass of sucrose - 342 g/mol
molarity of sucrose solution is 0.758 M
In 1 L solution the number of sucrose moles are - 0.758 mol
Therefore in 1.55 L solution, sucrose moles are - 0.758 mol/L x 1.55 L
= 1.17 mol
The mass of 1.17 mol of sucrose is - 1.17 mol x 342 g/mol = 4.00 x 10² g
Answer:
where is the answer options because it sounds like I need some
Answer:
The mass of reactants and products are equal hence the reaction obeys law of conservation of mass
Explanation:
The law of mass conservation states that for a closed system to all transfer of mass, the mass of system must remain constant over time. This means for a chemical reaction, the mass of reactants must equal the mass of products.
if 2.796g of Zn reacts with 2.414g of sulphur to produce 4.169g of ZnS ad 1.041g of unreacted sulphur, then it means that accorfing to the law of mass conservation, the mass of reactants (zinc and sulphur), must be equal to mass of products (zinc sulfide and unreacted sulphur)
Mass of reactants = 2.796g + 2.414g =5.21g
Mass of products = 4.169g + 1.041g=5.21g