Answer: When you break on your bike and when you rub your hands together to get warm.
Explanation: Force and friction affect our daily lives in numerous amounts of ways. For instance, when a football is kicked, it moves faster later after some time its force decreases due to friction. A common example of friciton is when a bike stops. When the brakes are applied the friction on the pads cause the bike to stop. The rubbing hands is making friction. Which makes you get warm.
Answer:
I believe that the answer is D. There are drilling platforms all along the coast that are used to drill for natural gas that can be used to generate electricity.
Explanation:
Solar panels use the sun, and that is renewable.
The power plant uses tides and waves, they are renewable.
Windmills use wind, that is renewable.
So, the answer is D.
Answer:
A) 138.8g
B)73.97 cm/s
Explanation:
K = 15.5 Kn/m
A = 7 cm
N = 37 oscillations
tn = 20 seconds
A) In harmonic motion, we know that;
ω² = k/m and m = k/ω²
Also, angular frequency (ω) = 2π/T
Now, T is the time it takes to complete one oscillation.
So from the question, we can calculate T as;
T = 22/37.
Thus ;
ω = 2π/(22/37) = 10.5672
So,mass of ball (m) = k/ω² = 15.5/10.5672² = 0.1388kg or 138.8g
B) In simple harmonic motion, velocity is given as;
v(t) = vmax Sin (ωt + Φ)
It is from the derivative of;
v(t) = -Aω Sin (ωt + Φ)
So comparing the two equations of v(t), we can see that ;
vmax = Aω
Vmax = 7 x 10.5672 = 73.97 cm/s
In solid and liquid the matter can occupy the 90 in³ and 157.1 in³ volume.
The matter in gaseous state can be expanded to occupy the volumes of the container.
<h3>
Volume of each of the container</h3>
The volume of each of the container is calculated as follows;
<h3>Volume of the rectangular container</h3>
V = 5 in x 6 in x 3 in
V = 90 in³
<h3>Volume of the cylindrical container</h3>
V = πr²h
V = (π)(2.5 in)²(8 in)
V = 157.1 in³
<h3>Volume of the matter</h3>
Vm = 3 in x 4 in x 5 in
Vm = 60 in³
<h3>Matter in solid and liquid state</h3>
Matter has fixed volume in solid and liquid state.
In solid and liquid the matter can occupy the 90 in³ and 157.1 in³ volume.
<h3>Matter in gaseous state</h3>
Matter has no definite volume in gaseous state.
The matter in gaseous state can be expanded to occupy the volumes of the container.
Learn more about states of matter here:
#SPJ1