Answer:
Explanation:
The movement of a body can be analyzed using New's first law. In an inertial frame (without acceleration) every body is kept at rest or moving at constant speed until there is an external force that changes this state
Let's analyze these cases in the framework of this first law
a) If the vehicle is going at constant speed the two bodies (the egg and the hands) do not change movement so he had returned to the hands
b) If the vehicle accelerates the passenger goes faster, but the egg that is not subject to anything does not change the movement, so it falls behind the passenger
c) If the vehicle slows down, the passenger reduces its speed and the distance traveled in time, but the egg that is not attached follows its movement and falls in front of the passenger.
Answer:
not really
Explanation:
pangea took million of years to separate. Years by Years the continents move. for example The two continents are moving away from each other at the rate of about 2.5 centimeters (1 inch) per year. And there movent is due to the activity beneath the earths crust. The plates are moved by currents in the magma at the very surface of the earths mantle , which then in turn cause things like earthquakes and volcanic eruptions.
Answer:
It is Conductivity because it is the measure of the ease.
The driver is tooling along in his snowmobile, pointed north,
at 8.5 m/s.
He's carrying the flares with him, so the flares are also moving north
at 8.5 m/s.
When he fires the flare straight up, it has a vertical velocity of 4.3 m/s
straight up, and a horizontal velocity of 8.5 m/s towards the north.
The magnitude of the net velocity is √(4.3² + 8.5²) .
That's about 9.53 m/s, at some angle between straight up
and straight north.
The angle above horizontal is the angle that has a tangent of 4.3/8.5 .
I'll let you work out the angle.
Answer:
a) 0.036 J b) 0.036J c) 0.036 d) 1.9m/s e) 0.18 m
Explanation:
Mass of the dart = 0.02kg, the spring was compressed to 6cm
Work needed to compress the spring = 1/2*k*x ^2 where k is the force constant of the spring in N/m, x is the distance it was compressed in m
Work needed to compress the spring = 0.5 * 20* 0.06^2 since 6cm = 6 / 100 = 0.06 m
Work needed to compress the spring = 0.036J
b) the total energy stored in the spring = the work done to compress the spring = 0.036J
c) kinetic energy of the dart as it leaves the the spring = elastic potential energy stored in the spring = the work done in compressing the = 0.036J using the law of conservation of energy; energy is neither created nor destroyed but transformed from one form to another.
d) 1/2mv^2 = 0.036
mv^2 = 0.036*2
v^2 = 0.036*2 / 0.02 = 3.6
v = √3.6 = 1.897 approx 1.9m/s
e) kinetic energy of the dart = work done against gravity to get the body to height h
Work done against gravity = potential energy conserved at height = -mgh g is negative because the motion is upward while gravity acts downward
0.036 = 0.02 * 9.81 * h
0.036 / ( 0.02*9.81) = h
h = 0.18 m