Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
Answer:
149.6 grams
Explanation:
Mass in gram = molar mass * number of moles
Massof CO2 in gram = 44*3.4=149.6 grams
Answer:
A. Digests food
Explanation:
Look about diggestive process in Google
Best regards
The first thing you do before performing anything in the laboratory is to read the procedure and prepare the materials needed. Next, if you already have the solution where you are supposed to take your 20 mL sample, then have it near you. Then, prepare a volumetric flask (750 mL) and a 20-mL pipette. Wash the pipette 3 times with the sample solution. If your diluent is water, wash the flask 3 times with water. Now, get 20 mL of sample from your parent solution, then add it to the flask (previously washed with water). Finally, add water until the mark in the flask and make sure that the water added is up to the mark based on the lower meniscus reading to be accurate in the amount inside the flask. <span />
You can tell the difference by How shiny it is and by how heavy it is