1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
4 years ago
6

What are the three most common metals used in die casting?

Engineering
1 answer:
Anit [1.1K]4 years ago
3 0

Answer:

Aluminium,Copper,Magnesium

Explanation:

The three most common metal of die casting are as follows

1.Aluminium

2.Copper

3.Magnesium

Die casting is the process in which metal is forced in the die to produces the desired casting product.Generally two type of machines are used like cold chamber and hot chamber machining,it depends on the metals.Die casting produces simple shape of casting ,it can not use for complex casting.

You might be interested in
The device whose operation closely matches the way the clamp-on ammeter works is
Ivanshal [37]

Answer:

The answer is

C. Split phase motor

Explanation:

Clamp meters rely on the principle of magnetic induction to make non contact AC current measurements. Electric current flowing through a wire produces a magnetic field.

Which is similar to basic mode of operation of electric motor and split phase motor is a type of electric motor.

What is a a clamp on meter?

Clamp meters are electrical testers which have wide jaws that are able to clamp around an electrical conductor. Originally designed as a single purpose tool for measuring AC current, clamp meters now include inputs for accepting test leads and other probes that support a wide range of electrical measurements, the jaws of a clamp meter permit work in tight spaces and permits current measurements on live conductors without circuit interruption.

6 0
3 years ago
CAD(computer-aided design) software and is used in__________and __________that show how to construct an object. Technical drawin
8_murik_8 [283]

Answer:

Plans; blueprints.

Explanation:

In Engineering, it is a common and standard practice to use drawings and models in the design and development of various tools or systems that are being used for proffering solutions to specific problems in different fields such as engineering, medicine, telecommunications and industries.

Hence, a design engineer make use of drawings such as pictorial drawings, sketches, or technical drawing to communicate ideas about a design to others, to record and retain informations (ideas) so that they're not forgotten and to analyze how different components of a design work together.

Technical drawing is mainly implemented with CAD (computer-aided design) software and is typically used in plans and blueprints that show how to construct an object.

Additionally, technical drawings show in detail how the pieces of something (object) relate to each other, as well as accurately illustrating the actual (true) shape and size of an object in the design and development process.

5 0
3 years ago
Oil with a density of 800 kg/m3 is pumped from a pressure of 0.6 bar to a pressure of 1.4 bar, and the outlet is 3 m above the i
Naddik [55]

Answer:

23.3808 kW

20.7088 kW

Explanation:

ρ = Density of oil = 800 kg/m³

P₁ = Initial Pressure = 0.6 bar

P₂ = Final Pressure = 1.4 bar

Q = Volumetric flow rate = 0.2 m³/s

A₁ = Area of inlet = 0.06 m²

A₂ = Area of outlet = 0.03 m²

Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s

Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s

Height between inlet and outlet = z₂ - z₁ = 3m

Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

\frac {P_1}{\rho g}+\frac{V_1^2}{2g}+z_1+h=\frac {P_2}{\rho g}+\frac{V_2^2}{2g}+z_2\\\Rightarrow h=\frac{P_2-P_1}{\rho g}+\frac{V_2^2-V_1^2}{2g}+z_2-z_1\\\Rightarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+\frac{6.67_2^2-3.33^2}{2\times 9.81}+3\\\Rightarrow h=14.896\ m

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 14.896\\\Rightarrow W_{p}=23380.8\ W

∴ Power input to the pump 23.3808 kW

Now neglecting kinetic energy

h=\frac{P_2-P_1}{\rho g}+z_2-z_1\\\Righarrow h=\frac{(1.4-0.6)\times 10^5}{800\times 9.81}+3\\\Righarrow h=13.19\ m\\

Work done by pump

W_{p}=\rho gQh\\\Rightarrow W_{p}=800\times 9.81\times 0.2\times 13.193\\\Rightarrow W_{p}=20708.8\ W

∴ Power input to the pump 20.7088 kW

6 0
3 years ago
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
Strike441 [17]

Answer:

the elongation of the metal alloy is 21.998 mm

Explanation:

Given the data in the question;

K = σT/ (εT)ⁿ

given that metal alloy true stress σT = 345 Mpa, plastic true strain εT = 0.02,

strain-hardening exponent n = 0.22

we substitute

K = 345 / 0.02^{0.22

K = 815.8165 Mpa

next, we determine the true strain

(εT) = (σT/ K)^1/n

given that σT = 412 MPa

we substitute

(εT) = (412 / 815.8165 )^(1/0.22)

(εT) = 0.04481 mm

Now, we calculate the instantaneous length

l_i = l_0e^{ET

given that l_0 = 480 mm

we substitute

l_i =480mm × e^{0.04481

l_i =  501.998 mm

Now we find the elongation;

Elongation = l_i - l_0

we substitute

Elongation = 501.998 mm - 480 mm

Elongation = 21.998 mm

Therefore, the elongation of the metal alloy is 21.998 mm

6 0
3 years ago
When an electron in a valence band is raised to a conduction band by sufficient light energy, semiconductors start conducting __
garri49 [273]

Answer:

This band gap also allows semiconductors to convert light into electricity in photovoltaic cells and to emit light as LEDs when made into certain types of diodes. Both these processes rely on the energy absorbed or released by electrons moving between the conduction and valence bands.

Explanation:

On the internet

4 0
3 years ago
Other questions:
  • 7 Single-use earplugs require a professional fitting before they can be used.
    10·2 answers
  • PLZ HURRY IM ON A TIMER
    6·1 answer
  • Cold water (cp = 4180 J/kg·K) leading to a shower enters a thin-walled double-pipe counterflow heat exchanger at 15°C at a rate
    11·1 answer
  • 3. Which of the following is not a common impact
    7·1 answer
  • Using the idea of mass and change of speed... could a bowling ball be thrown so fast that it has the same force as a car driving
    7·1 answer
  • Water flows through a horizontal 60 mm diameter galvanized iron pipe at a rate of 0.02 m3/s. If the pressure drop is 135 kPa per
    9·1 answer
  • What is meant by the thickness to chord ratio of an aerofoil?
    12·1 answer
  • A team of engineers is working on a design to increase the power of a hydraulic lever. They have brainstormed several ideas. Whi
    13·1 answer
  • I need to solve for d
    11·2 answers
  • A +7.5% grade meets a horizontal grade on a section of a rural mountainous highway. If the length of the crest vertical curve fo
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!