1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
3 years ago
11

Which of the following quantities can be determined from a speed-time graph of a particle travelling in a straight line?

Physics
2 answers:
enot [183]3 years ago
8 0

The answer is:

Both the distance traveled in a given time and the magnitude of the acceleration at a given instant


Hope I Helped!

Diano4ka-milaya [45]3 years ago
7 0
The answer is letter B
You might be interested in
The acceleration due to gravity, g , is constant at sea level on the Earth's surface. However, the acceleration decreases as an
blsea [12.9K]

Answer:

  g    = g₀   [1- 2 h / Re + 3 (h / Re)²]

Explanation:

The law of universal gravitation is

        F = G m Me / Re²

Where g is the universal gravitational constant, m and Me are the mass of the body and the Earth, respectively and R is the distance between them

      F = G Me /Re²  m

We call gravity acceleration a

       g₀ = G Me / Re².

When the body is at a height h above the surface the distance is

            R = Re + h

Therefore  the attractive force is

      F = G Me m / (Re + h)²

Let's take Re's common factor

      F = G Me / Re²  m / (1+ h / Re)²

As Re has a value of 6.37 10⁶ m and the height of the body in general is less than 10⁴ m, the h / Re term is very small, so we can perform a series expansion

         (1+ h / Re)⁻² = 1 -2 h / Re + 6/2 (h / Re) 2 + ...

Let's replace

       F = G Me /Re²   m [1- 2 h / Re + 3 (h / Re)²]

       F = g₀   m  [1- 2 h / Re + 3 (h / Re)²]

If we call the force of attraction at height

     m g =g₀ m  [1- 2 h / Re + 3 (h / Re)²]

       g    = g₀   [1- 2 h / Re + 3 (h / Re)²]

3 0
3 years ago
Astronomy can best be described as a/an
Alchen [17]
<span>Astronomy is a natural science that studies celestial objects and phenomena. More generally, all astronomical phenomena that originate outside Earth's atmosphere are within the purview of astronomy. Therefore, the correct answer to the question "Astronomy can best be described as a/an" is "study of objects beyond the Earth's atmosphere."</span>
3 0
3 years ago
A projectile is fired horizontally from a height of 78.4 m at a speed of 300 m/sec. How far did it travel horizontally before hi
Mice21 [21]

Answer:

Explanation:

Using the formula for calculating range expressed as;

R = U√2H/g

U is the speed = 300m/s

H is the maximum height = 78.4m

g is the acceleration due to gravity = 9.8m/s²

Substitute into the fromula;

R = 300√2(78.4)/9.8

R = 300 √(16)

R = 300*4

R = 1200m

Hence the projectile travelled 1200m before hitting the ground

3 0
3 years ago
A sinusoidally oscillating current I ( t ) with an amplitude of 9.55 A and a frequency of 359 cycles per second is carried by a
UNO [17]

Answer:

P_{avg} = 6.283*10^{-9} \ W

Explanation:

Given that;

I₀ = 9.55 A

f = 359 cycles/s

b = 72.2 cm

c = 32.5 cm

a = 80.2 cm

Using the formula;

\phi = \frac{\mu_o Ic }{2 \pi} In (\frac{b+a}{b})

where;

E= \frac{d \phi}{dt}

E = \frac{\mu_o}{2 \pi}c In (\frac{b+a}{a}) I_o \omega cos \omega t

E_{rms} =   \frac { {\frac{\mu_o \ c}{2 \pi} In (\frac{b+a}{a}) I_o (2 \pi f)}}{\sqrt{2}}

Replacing our values into above equation; we have:

E_{rms} =   \frac { {\frac{4 \pi*10^{-7}*0.325}{2 \pi} In (\frac{72.2+80.2}{80.2}) *9.55 (2 \pi *359)}}{\sqrt{2}}

E_{rms} =   \frac {8.98909588*10^{-4} }{\sqrt{2}}

E_{rms} =   6.356*10^{-4} \ V

Then the P_{avg is calculated as:

P_{avg} = \frac{E^2}{R}

P_{avg} = \frac{(6.356*10^{-4})^2}{64.3}

P_{avg} = 6.283*10^{-9} \ W

6 0
3 years ago
A child is riding a merry-go-round that is turning at 7.18 rpm. If the child is standing 4.65 m from the center of the merry-go-
iVinArrow [24]

Answer:

B) 3.50 m/s

Explanation:

The linear velocity in a circular motion is defined as:

v=\omega r(1)

The angular frequency (\omega) is defined as 2π times the frequency and r is the radius, that is, the distance from the center of the circular motion.

\omega=2\pi f(2)

Replacing (2) in (1):

v=2\pi fr

We have to convert the frequency to Hz:

7.18rpm*\frac{1Hz}{60rpm}=0.12Hz

Finally, we calculate how fast is the child moving:

v=2\pi(0.12Hz)(4.65m)\\v=3.5\frac{m}{s}

3 0
3 years ago
Other questions:
  • A cd has a mass of 17 g and a radius of 6.0 cm. When inserted into a player, the cd starts from rest and accelerates to an angul
    12·1 answer
  • A thin metallic spherical shell of radius 0.357 m has a total charge of 5.03 times 10^-6 C placed on it. At the center of the sh
    12·1 answer
  • Johannes Kepler started his astronomy career as an assistant to??
    9·1 answer
  • Zero gauge wire has a diameter of 0.32in and can carry a sustained current of 150A safely. What is the magnetic field a distance
    13·1 answer
  • The kinetic energy of a rotating body is generally written as K=12Iω2, where I is the moment of inertia. Find the moment of iner
    15·1 answer
  • A pulley requires you to pull 3 times the amount of rope in order to lift an object. Therefore, the mechanical advantage is ____
    12·1 answer
  • How many atoms are in NaHCO3
    5·1 answer
  • When the frequency of an electromagnetic wave increases, its energy
    13·2 answers
  • A uniform solid sphere of unknown radius and mass floats exactly half-submerged in a fluid of density 999 kg/m3. Find the densit
    15·1 answer
  • What happens to temperature of a substance during phase change
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!