Answer:
1.7927 mL
Explanation:
The mass of solid taken = 4.75 g
This solid contains 21.6 wt%
, thus,
Mass of
=
= 1.026 g
Molar mass of
= 261.337 g/mol
The formula for the calculation of moles is shown below:
Thus,

Considering the reaction as:

1 moles of
react with 1 mole of 
Thus,
0.003926 mole of
react with 0.003926 mole of 
Moles of
= 0.003926 mole
Also, considering:

Molarity = 2.19 M
So,

Volume = 0.0017927 L
Also, 1 L = 1000 mL
<u>So, volume = 1.7927 mL</u>
When you heat an atom, some of its electrons are "excited* to higher energy levels. When an electron drops from one level to a lower energy level, it emits a quantum of energy. ... The different mix of energy differences for each atom produces different colours. Each metal gives a characteristic flame emission spectrum.
Answer: 167 g
Explanation:
1) The depression of the freezing point of a solution is a colligative property ruled by this equation:
ΔTf = i × m × Kf
Where:
ΔTf is the decrease of the freezing point of the solvent due to the presence of the solute.
i is the Van't Hoof factor and is equal to the number of ions per each mole of solute. It is only valid for ionic compounds. Here the solute is not ionice, so you take i = 1
Kf is the molal freezing constant and is different for each solvent. For water it is 1.86 m/°C
2) Calculate the molality (m) of the solution
ΔTf = i × m × Kf ⇒ m = ΔTf / ( i × Kf) = 5.00°C / 1.86°C/m = 2.69 m
3) Calculate the number of moles from the molality definition
m = moles of solute / kg of solvent ⇒ moles of solute = m × kg of solvent
moles of solute = 2.69 m × 1.00 kg = 2.69 moles
4) Convert moles to grams using the molar mass
molar mass of C₂H₆O₂ = 62.07 g/mol
mass in grams = number of moles × molar mass = 2.69 moles × 62.07 g/mol = 166.97 g ≈ 167 g
Explanation:
It is known that charge on xenon nucleus is
equal to +54e. And, charge on the proton is
equal to +e. So, radius of the nucleus is as follows.
r = 
= 3.0 fm
Let us assume that nucleus is a point charge. Hence, the distance between proton and nucleus will be as follows.
d = r + 2.5
= (3.0 + 2.5) fm
= 5.5 fm
=
(as 1 fm =
)
Therefore, electrostatic repulsive force on proton is calculated as follows.
F = 
Putting the given values into the above formula as follows.
F = 
= 
= 
= 411.2 N
or, =
N
Thus, we ca conclude that
N is the electric force on a proton 2.5 fm from the surface of the nucleus.