Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.
Answer:
The pieces will attract one another
Explanation:
From the law of conservation of energy, we know that energy can neither be created nor destroyed, but transformed. If one piece of the toy that was neutral ends up having an electric charge (positive or negative), from the conservation of energy, the other piece must have a charge opposite to that on the other charged piece but equal in magnitude. These two pieces which are oppositely charged attracts each other, this shows that electric charge is conserved.
Answer:
μ = 0.0315
Explanation:
Since the car moves on a horizontal surface, if we sum forces equal to zero on the Y-axis, we can determine the value of the normal force exerted by the ground on the vehicle. This force is equal to the weight of the cart (product of its mass by gravity)
N = m*g (1)
The friction force is equal to the product of the normal force by the coefficient of friction.
F = μ*N (2)
This way replacing 1 in 2, we have:
F = μ*m*g (2)
Using the theorem of work and energy, which tells us that the sum of the potential and kinetic energies and the work done on a body is equal to the final kinetic energy of the body. We can determine an equation that relates the frictional force to the initial speed of the carriage, so we will determine the coefficient of friction.

where:
vf = final velocity = 0
vi = initial velocity = 85 [km/h] = 23.61 [m/s]
d = displacement = 900 [m]
F = friction force [N]
The final velocity is zero since when the vehicle has traveled 900 meters its velocity is zero.
Now replacing:
(1/2)*m*(23.61)^2 = μ*m*g*d
0.5*(23.61)^2 = μ*9,81*900
μ = 0.0315
Answer:
x = 45 MPH
Explanation:
given,
Average speed of the first half = 75 MPH
Average speed of entire ride = 60 MPH
Average speed of the second half = ?
let the average speed of the second half = x MPH
now,
average of entire ride is given as 60 mph so,


75 + x = 120
x = 120 -75
x = 45 MPH
hence, the average speed of the second half comes out to be 45 MPH.
Answer:
Approximate atomic radius for polonium-209 is 167.5 pm .
Explanation:
Number of atom in simple cubic unit cell = Z = 1
Density of platinum = 
Edge length of cubic unit cell= a = ?
Atomic mass of Po (M) = 209 g/mol
Formula used :

where,
ρ = density
Z = number of atom in unit cell
M = atomic mass
= Avogadro's number
a = edge length of unit cell
On substituting all the given values , we will get the value of 'a'.


Atomic radius of the polonium in unit cell = r
r = 0.5a



Approximate atomic radius for polonium-209 is 167.5 pm.