Answer:
carbohydrates , minerals - lime coal
The position at time t is
x(t) = 0.5t³ - 3t² + 3t + 2
When the velocity is zero, the derivative of x with respect to t is zero. That is,
x' = 1.5t² - 6t + 3 = 0
or
t² - 4t + 2 = 0
Solve with the quadratic formula.
t = (1/2) [ 4 +/- √(16 - 8)] = 3.4142 or 0.5858 s
When t =0.5858 s, the position is
x = 0.5(0.5858³) - 3(0.5858²) + 3(0.5858) + 2 = 2.828 m
When t=3.4142 s, the position is
x = 0.5(3.4142³) - 3(3.4142²) + 3(3.4142) + 2 = -2.828 m
Reject the negative answer.
Answer:
The velocity is zero when t = 0.586 s, and the distance is 2.83 m
When the acceleration is zero, the second derivative of x with respect to t is zero. That is,
3t - 6 = 0
t = 2
The distance traveled is
x = 0.5(2³) - 3(2²) + 3(2) + 2 = 0
Answer:
When the acceleration is zero, t = 2 s, and the distance traveled is zero.
Answer:
Although the wave slows down, its frequency remains the same, due to the fact that its wavelength is shorter. When waves travel from one medium to another the frequency never changes.
Resistor 1 and three are in series so the total resistance is 1.
Answer:
a. Photogates placed at the beginning, end, and at various locations along the track that the car travels on.
b. A meterstick to measure the distance of the track that the car travels on.
Explanation:
Physics can be defined as the field or branch of science that typically deals with nature and properties of matter, motion and energy with respect to space, force and time.
In this scenario, a student is provided with a battery-powered toy car that the manufacturer claims will always operate at a constant speed. The student must design an experiment in order to test the validity of the claim.
Therefore, to test the validity of the claim, the student should use the following measuring tools;
a. Photogates placed at the beginning, end, and at various locations along the track that the car travels on. This device is typically used to measure time with respect to the rate of change of the interruption or block of an infra-red beam.
b. A meterstick to measure the distance of the track that the car travels on.
Hence, with these two devices the student can effectively measure or determine the validity of the claim.