Answer:
The angle of incidence is greater than the angle of refraction
Explanation:
Refraction occurs when a light wave passes through the boundary between two mediums.
When a ray of light is refracted, it changes speed and direction, according to Snell's Law:
where
:
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence (the angle between the incident ray and the normal to the boundary)
is the angle of refraction (the angle between the refracted ray and the normal to the boundary)
In this problem, we have a ray of light passing from air into clear plastic. We have:
(index of refraction of air)
approx. (index of refraction in clear plastic)
Snell's Law can be rewritten as
And since , we have
And so
Which means that
The angle of incidence is greater than the angle of refraction
<span>i think the answer is : Bend the arm at the elbow with the back straight </span>
Answer:
Assume that the ball undergoes motion along a straight line. ... F = m A Force = (mass) x (acceleration) The question tells you the mass and the acceleration. All YOU have to do is take the numbers and pluggum into Newton's 2nd law. F = m A = (0.75 kg) (25 m/s²) = (0.75 x 25) kg-m/s² = 18.75 Newtons .
Explanation:
i looked it up ok
Frequency and Wavelength
<u>Explanation:</u>
The speed of a wave changes based on frequency and wavelength. Wavelength is the distance between two corresponding points on adjacent waves. Wave frequency is the number of waves that pass a fixed point in a given amount of time. The wave speed depends upon the medium through which the wave is moving. Only an alteration in the properties of the medium will cause a change in the speed.
Speed, frequency and wavelength is related as:
speed = frequency X wavelength
Increasing the wavelength of a wave doesn’t change its speed. That’s because when wavelength increases, wave frequency decreases. As a result, the product of wavelength and wave frequency is still the same speed.