Answer:
5 x 10⁻⁷N
Explanation:
Given parameters:
Mass of object 1 = 100kg
Mass of object 2 = 300kg
Distance = 2m
Unknown:
Force of gravitational attraction between the objects = ?
Solution:
From Newton's law of universal gravitation we derive an expression:
Fg =
G is the universal gravitation constant = 6.67 x 10⁻¹¹
m is the mass
r is the distance between the bodies
Now insert the parameters and solve;
Fg = 6.67 x 10⁻¹¹ x
= 5 x 10⁻⁷N
Answer:
Deductive reasoning
Explanation:
deductive reasoning
the process of thinking that involves considering an overall general idea or theory and drawing specific conclusions or making specific predictions about it
The correct answer is Light years
Answer:
11.09 m/s
Explanation:
Given that an object is thrown vertically up and attains an upward velocity of 9.6 m/s when it reaches one fourth of its maximum height above its launch point.
The parameters given are:
Initial velocity U = ?
Final velocity V = 9.6 m/s
Acceleration due to gravity g = 9.8m/s^2
Let first assume that the object is thrown from rest with the velocity U, at maximum height V = 0
Using third equation of motion
V^2 = U^2 - 2gH
0 = U^2 - 2 × 9.8H
U^2 = 19.6H ........ (1)
Using the formula again for one fourth of its maximum height
9.6^2 = U^2 - 2 × 9.8 × H/4
92.16 = U^2 - 19.6/4H
92.16 = U^2 - 4.9H
U^2 = 92.16 + 4.9H ...... (2)
Substitute U^2 in equation (1) into equation (2)
19.6H = 92.16 + 4.9H
Collect the like terms
19.6H - 4.9H = 92.16
14.7H = 92.16
H = 92.16/14.7
H = 6.269
Substitute H into equation 2
U^2 = 92.16 + 4.9( 6.269)
U^2 = 92.16 + 30.72
U^2 = 122.88
U = 11.09 m/s
Therefore, the initial velocity of the object is 11.09 m/s
Answer:In terms of an equation, the momentum of an object is equal to the mass of the object times the velocity of the object. where m is the mass and v is the velocity. The equation illustrates that momentum is directly proportional to an object's mass and directly proportional to the object's velocity.
Explanation: