Answer: A Punnett square can be used to predict genotype and phenotypes of offspring from genetic crosses. ... In the P generation, one parent has a dominant yellow phenotype and the genotype YY, and the other parent has the recessive green phenotype and the genotype yy.
Explanation:
Answer: C. Steel
Explanation: When a sound wave travels through a solid body consisting
of an elastic material, the velocity of the wave is relatively
high. For instance, the velocity of a sound wave traveling
through steel (which is almost perfectly elastic) is about
5,060 meters per second. On the other hand, the velocity
of a sound wave traveling through an inelastic solid is
relatively low. So, for example, the velocity of a sound wave
traveling through lead (which is inelastic) is approximately
1,402 meters per second.
Explanation:
The distance that a car travels down the interstate can be calculated with the following formula:
Distance = Speed x Time
(A) Speed of the car, v = 70 miles per hour = 31.29 m/s
Time, d = 6 hours = 21600 s
Distance = Speed x Time
D = 31.29 m/s × 21600 s
D = 675864 meters
or

(b) Time, d = 10 hours = 36000 s
Distance = Speed x Time
D = 31.29 m/s × 36000 s
D = 1126440 meters
or

(c) Time, d = 15 hours = 54000 s
Distance = Speed x Time
D = 31.29 m/s × 54000 s
D = 1689660 meters
or

Hence, this is the required solution.
Answer:
The final angular speed is 16.1 rad/s
Explanation:
Given;
initial moment of inertia, I₁ = 2.56 kg.m²
final moment of inertia, I₂ = 0.40 kg.m²
initial angular speed, ω₁ = 0.4 rev/s = 2.514 rad/s
Apply the principle of conservation of angular momentum;
I₁ω₁ = I₂ω₂
where;
ω₂ is the final angular speed
ω₂ = (I₁ω₁) / (I₂)
ω₂ = (2.56 x 2.514) / (0.4)
ω₂ = 16.1 rad/s
Therefore, the final angular speed is 16.1 rad/s
Answer:
There is no actual question attached to this, to get a real answer be sure to include the documents/question that is provided on your work.
Explanation: