Wave speed = (wavelength) x (frequency)
Wave speed = (3 m) x (15 Hz)
<em>Wave speed = 45 m/s</em>
There's not enough information to find an answer.
I think the idea here is that in descending (416 - 278) = 138 meters,
the glider gives up some gravitational potential energy, which
becomes kinetic energy at the lower altitude. This is all well and
good, but we can't calculate the difference in potential energy
without knowing the mass of the glider.
Answer:
An example in which liquid pressure phenomena can be used in daily life is in Water blasting
Explanation:
Water blasting refers application of pressurized water to remove materials from the surface of objects.
There are different varieties of water blasting, including;
Hydrocleaning; Cleaning enabled by the use of high pressure water
Hydrodemolition; Demolition or removal of concrete using pressurized water
Hydrojetting; The spraying of water under pressure on surfaces in order to remove surface contaminants.
Answer:
x = 0.775m
Explanation:
Conceptual analysis
In the attached figure we see the locations of the charges. We place the charge q₃ at a distance x from the origin. The forces F₂₃ and F₁₃ are attractive forces because the charges have an opposite sign, and these forces must be equal so that the net force on the charge q₃ is zero.
We apply Coulomb's law to calculate the electrical forces on q₃:
(Electric force of q₂ over q₃)
(Electric force of q₁ over q₃)
Known data
q₁ = 15 μC = 15*10⁻⁶ C
q₂ = 6 μC = 6*10⁻⁶ C
Problem development
F₂₃ = F₁₃
(We cancel k and q₃)

q₂(2-x)² = q₁x²
6×10⁻⁶(2-x)² = 15×10⁻⁶(x)² (We cancel 10⁻⁶)
6(2-x)² = 15(x)²
6(4-4x+x²) = 15x²
24 - 24x + 6x² = 15x²
9x² + 24x - 24 = 0
The solution of the quadratic equation is:
x₁ = 0.775m
x₂ = -3.44m
x₁ meets the conditions for the forces to cancel in q₃
x₂ does not meet the conditions because the forces would remain in the same direction and would not cancel
The negative charge q₃ must be placed on x = 0.775 so that the net force is equal to zero.