<em></em>
Answer:
<u><em>The aufbau principle</em></u>
<u />
<u><em>The Pauli exclusion principle</em></u>
<u><em></em></u>
<u><em>Hund's rule of maximum multiplicity</em></u>
Explanation:
<u><em>The aufbau principle:</em></u>
<em></em>
The fundamental electronic configuration is achieved by placing the electrons one by one in the different orbitals available for the atom, which are arranged in increasing order of energy.
<u><em>The Pauli exclusion principle:</em></u>
<em></em>
Two electrons of the same atom cannot have their four equal quantum numbers. Because each orbital is defined by the quantum numbers n, l, and m, there are only two possibilities ms = -1/2 and ms = +1/2, which physically reflects that each orbital can contain a maximum of two electrons, having opposite spins
<u><em>Hund's rule of maximum multiplicity:</em></u>
This rule says that when there are several electrons occupying degenerate orbitals, of equal energy, they will do so in different orbitals and with parallel spins, whenever this is possible. Because electrons repel each other, the minimum energy configuration is one that has electrons as far away as possible from each other, and that is why they are distributed separately before two electrons occupy the same orbital.
Answer:
70.6 mph
Explanation:
Car A mass= 1515 lb
Car B mass=1125 lb
Speed of car B is 46 miles/h
Distance before locking, d=19.5 ft
Coefficient of kinetic friction is 0.75
Initial momentum of car B=mv where m is mass and v is velocity in ft/s
46 mph*1.46667=67.4666668 ft/s
Initial momentum of car A is given by
where
is velocity of A
Taking East as positive and west as negative then the sum of initial momentum is
The common velocity is represented as
hence after collision, the final momentum is
From the law of conservation of linear momentum, sum of initial and final momentum equals each other hence
The acceleration of two cars
From kinematic equation
hence
Substituting the value of
in equation
D. rates of soil erosion are much lower during droughts that last several years
1N=1kg•m/s^2 so the answer is 3N
Answer:
0.000625 V
Explanation:
The formula linking current , resistance and voltage is :
V = I/R
Voltage = Current / Resistance
Now we substitute values given in question :
Voltage = 0.250 / 400
Voltage (V) = 0.000625
Our final answer is 0.000625 V
Hope this helped and have a good day