Answer: The answer is Z only
I’m assuming the answer choices are
1) x only
2) Z only - the answer
3) X and Y
4) X and Z
Explanation:
Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration of
that should used originally is 
Explanation:
From the question we are told that
The necessary elementary step is

The time taken for sixth of 0.5 M of reactant to react 
The time available is 
The desired concentration to remain
Let Z be the reactant , Y be the first product and X the second product
Generally the elementary rate law is mathematically as

Where k is the rate constant ,
is the concentration of Z
From the elementary rate law we see that the reaction is second order (This because the concentration of the reactant is raised to power 2 )
For second order reaction

Where
is the initial concentration of Z which a value of 
From the question we are told that it take 9 hours for the concentration of the reactant to become


So


=> 
For 





2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!