Answer:
I_v = 2,700 W / m^2
I_m = 610 W / m^2
I_s = 16 W / m^2
Explanation:
Given:
- The Power of EM waves emitted by Sun P_s = 4.0*10^26 W
- Radius of Venus r_v = 1.08 * 10^11 m
- Radius of Mars r_m = 2.28 * 10^11 m
- Radius of Saturn r_s = 1.43 * 10^12 m
Find:
Determine the intensity of electromagnetic waves from the sun just outside the atmospheres of (a) Venus, (b) Mars, and (c) Saturn.
Solution:
- We know that Power is related to intensity and surface area of an object follows:
I = P / 4*pi*r^2
Where, A is the surface area of a sphere models the atmosphere around the planets.
a)
- The intensity at the surface of Venus is calculated as:
I_v = P_s / 4*pi*r^2_v
I_v = 4.0*10^26 / 4*pi*(1.08*10^11)^2
I_v = 2,700 W / m^2
b)
- The intensity at the surface of Mars is calculated as:
I_m = P_s / 4*pi*r^2_m
I_m = 4.0*10^26 / 4*pi*(2.28*10^11)^2
I_m = 610 W / m^2
c)
- The intensity at the surface of Saturn is calculated as:
I_s = P_s / 4*pi*r^2_s
I_s = 4.0*10^26 / 4*pi*(1.43*10^12)^2
I_s = 16 W / m^2
Answer:
= 591.45 T/s
Explanation:
i = induced current in the loop = 0.367 A
R = Resistance of the loop = 117 Ω
E = Induced voltage
Induced voltage is given as
E = i R
E = (0.367) (117)
E = 42.939 volts
= rate of change of magnetic field
A = area of loop = 7.26 x 10⁻² m²
Induced emf is given as
= 591.45 T/s
Answer: A
Explanation:Earthquakes occur on faults - strike-slip earthquakes occur on strike-slip faults, normal earthquakes occur on normal faults, and thrust earthquakes occur on thrust or reverse faults. When an earthquake occurs on one of these faults, the rock on one side of the fault slips with respect to the other.
Answer: 10^-3 V^2/Hz
Explanation:
1 Hz:
Su(f) = No * |H(f)|^2
= 10^-3 * 1/(1+(2*pi*f*R*C)^2)
= 10^-3 V^2/Hz