Answer:
801.1 kJ
Explanation:
The ice increases in temperature from -20 °C to 0 °C and then melts at 0 °C.
The heat required to raise the ice to 0 °C is Q₁ = mc₁Δθ₁ where m = mass of ice = 1 kg, c₁ = specific heat capacity of ice = 2108 J/kg°C and Δθ₁ = temperature change. Q₁ = 1 kg × 2108 J/kg°C × (0 - (-20))°C = 2108 J/kg°C × 20 °C = 4216 J
The latent heat required to melt the ice is Q₂ = mL₁ where L₁ = specific latent heat of fusion of ice = 336000 J/kg. Q₁ = 1 kg × 336000 J/kg = 336000 J
The heat required to raise the water to 100 °C is Q₃ = mc₂Δθ₂ where m = mass of ice = 1 kg, c₂ = specific heat capacity of water = 4187 J/kg°C and Δθ₂ = temperature change. Q₃ = 1 kg × 4187 J/kg°C × (100 - 0)°C = 4187 J/kg°C × 100 °C = 418700 J
The latent heat required to convert the water to steam is Q₄ = mL₂ where L = specific latent heat of vapourisation of water = 2260 J/kg. Q₄ = 1 kg × 2260 J/kg = 2260 J
The heat required to raise the steam to 120 °C is Q₅ = mc₃Δθ₃ where m = mass of ice = 1 kg, c₃ = specific heat capacity of steam = 1996 J/kg°C and Δθ₃ = temperature change. Q₃ = 1 kg × 1996 J/kg°C × (120 - 100)°C = 1996 J/kg°C × 20 °C = 39920 J
The total amount of heat Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅ = 4216 J + 336000 J
+ 418700 J + 2260 J + 39920 J = 801096 J ≅ 801.1 kJ
The distance between the charges is 13.86 X 10⁴m
<u>Explanation:</u>
Given:
Force, F = 1.2N
Charge, q₁ = 1.602 X 10⁻¹⁹ C
k = 8.987 X 10⁹ Nm²/C²
Distance, d = ?
According to Coulomb's law:

Substituting the value in the formula we get:

Therefore, the distance between the charges is 13.86 X 10⁴m
The mutual forces of gravity between the Earth and an object on or near
its surface are (<em>mass of the object</em>) x (<em>acceleration of gravity on Earth</em>).
These two forces are equal, and we call their strength the "weight" of
the object. It's the number shown on the scale as long as nobody has
their thumb on the scale. In this problem, the force is 45N . (That's
about 10.12 pounds.)
The acceleration of gravity on Earth is about 9.8 meters per second² .
So 45N = (mass in kilograms) x (9.8 meters per second²)
Divide each side by 9.8 : Mass = 45/9.8 = <u>4.59 kilograms</u> (rounded)
Answer:
0.714 m
Explanation:
From the question,
v = λf......................... Equation 1
Where v = velocity of visible light, f = frequency of visible light, λ = wave length of visible light.
make λ the subject of the equation
λ = v/f.................. Equation 2
Given: f = 4.2×10⁸ Hz
Note: Light is an electromagnetic wave, and all electromagnetic waves travels with the same speed (3×10⁸ m/s)
Constant: v = 3×10⁸ m/s
Substitute these values into equation 2
λ = 3×10⁸/4.2×10⁸
λ = 0.714 m
Answer:
if you only have to control your chakra and know how to get all your vibes to pass it to objects and it takes time to practice