Answer:
PAPER CLIPS ON NOSE OF A PAPER AIRPLANE
Purpose: To determine if the number of paperclips on the nose of a paper airplane affects the velocity and speed, measured in meters per seconds.
Make a Hypothesis Based on the Learning Thus Far: If the number of paperclips on the nose of a paper airplane increases, then the speed will _increase______ (increase, decrease, stay the same) in a __linear_______ (linear, exponential, logarithmic) mathematical relationship, and the velocity will (increase, decrease, stay the same) in a __exponential____ (linear, exponential, logarithmic) mathematical relationship. (Fill in the appropriate words for your hypothesis.)
Pictures: Insert at least 3 pictures of yourself conducting the experiment into this lab report. At least 2 pictures must show your face as you conduct the investigation. You may need to ask someone to help take these photos.
Explanation:
Light are transfer through waves in the atmosphere and yes it true that the darker the color is the more heat it could absorb thus it is also explain that the lighter the color is the less heat or light its absorb its because the light is bounces back through other form of light and it lessens the amount of heat in a substance. In Ryan's procedure the possible wrong that he done is the present of a green cotton glove. Green color are one of the color that bounces light and could not support the hypothesis of Ryan and the possible temperature he could get is not the accurate one.
The layer of electrically charged molecules and atoms which spans 40-250 miles above ground called ionosphere causes the display of the aurora and the reflection of radio waves back to earth.
Answer:
Explanation:
Answer:
Explanation:
Given that,
System of two particle
Ball A has mass
Ma = m
Ball A is moving to the right (positive x axis) with velocity of
Va = 2v •i
Ball B has a mass
Mb = 3m
Ball B is moving to left (negative x axis) with a velocity of
Vb = -v •i
Velocity of centre of mass Vcm?
Velocity of centre of mass can be calculated using
Vcm = 1/M ΣMi•Vi
Where M is sum of mass
M = M1 + M2 + M3 +...
Therefore,
Vcm=[1/(Ma + Mb)] × (Ma•Va +Mb•Vb
Rearranging for better understanding
Vcm = (Ma•Va + Mb•Vb) / ( Ma + Mb)
Vcm = (m•2v + 3m•-v) / (m + 3m)
Vcm = (2mv — 3mv) / 4m
Vcm = —mv / 4m
Vcm = —v / 4
Vcm = —¼V •i
To solve the problem it is necessary to apply conservation of the moment and conservation of energy.
By conservation of the moment we know that
Where
M=Heavier mass
V = Velocity of heavier mass
m = lighter mass
v = velocity of lighter mass
That equation in function of the velocity of heavier mass is
Also we have that
On the other hand we have from law of conservation of energy that
Where,
W_f = Work made by friction
KE = Kinetic Force
Applying this equation in heavier object.
Here we can apply the law of conservation of energy for light mass, then
Replacing the value of
Deleting constants,