Energy required = mass x specific heat x temperature difference
= 0.5 x 4.19x10^3 x 2
= 4190J
Answer:
MV/2
Explanation:
Because that is what I've been taught
Answer:
N=3176.5rulling
Explanation:
We were told that the source containing a mixture of hydrogen and deuterium atoms emits light with
wavelengths whose mean is 540 nm
Then λ= 540 nm, but we need to convert to metre which = (540× 10⁻⁹m)
Also whose separation is 0.170 nm, which mean the difference between the wavelength is 0.170 nm then
Δ λ = 0.170 nm the we convert to metre we have. Δλ= 0.170 nm= (0.170×10⁻⁹m)
the formular below can be used to can be used to calculate our minimum number of lines
N= λ /(m Δλ)
Where N is number of fillings i.e number of lines
λ= wavelength
Δλ= difference in wavelength
m=1
Then if we substitute the values we have
,N= (540× 10⁻⁹ m)/[(1)*(0.170× 10⁻⁹m)]
N =3176.5rulling
Therefore, minimum number of lines = =3176.5rulling
Answer:
Resonance structures have <u> </u><u>same</u><u> </u> connectivity of atoms and <u> differ only in</u> distribution of electrons.
Explanation:
Atoms supply the electrons from their outer electron shells. Electrons are found free in nature and are grouped around the nucleus into shells. Electrons can be further explained as negatively charged subatomic particle. Electrons have properties of both particles and waves and they can be moved around.
Resonance structures are imaginary structures and not all of them are created equally. Resonance structures have two or more possible electron structures, and, the resonance structures for a particular substance sometimes have different energy and stability. When resonance structures are identical, they are important descriptions of the molecule. The position of the atoms is the same in the various resonance structures of a compound, but the electrons are distributed differently around the structure.