Answer:
x = 41.28 m
Explanation:
This is a projectile launching exercise, let's find the time it takes to get to the base of the cliff.
Let's start by using trigonometry to find the initial velocity
cos 25 = v₀ₓ / v₀
sin 25 = Iv_{oy} / v₀
v₀ₓ = v₀ cos 25
v_{oy} = v₀ sin 25
v₀ₓ = 22 cos 25 = 19.94 m / s
v_{oy} = 22 sin 25 = 0.0192 m / s
let's use movement on the vertical axis
y = y₀ + v_{oy} t - ½ g t²
when reaching the base of the cliff y = 0 and the initial height is y₀ = 21 m
0 = 21 + 0.0192 t - ½ 9.81 t²
4.905 t² - 0.0192 t - 21 = 0
t² - 0.003914 t - 4.2813 =0
we solve the quadratic equation
t =
t =
t₁ = 2.07 s
t₂ = -2.067 s
since time must be a positive scalar quantity, the correct result is
t = 2.07 s
now we can look up the distance traveled
x = v₀ₓ t
x = 19.94 2.07
x = 41.28 m
Answer:
u=36.8m/s
Explanation:
because of the acceleration is a constant acceleration we can use one of the "SUVAT" equations
u^2=v^2-2ā*s. where:
u^2 stands for intial velocity
v^2 stands for final velocity
since the cougar skidded to a complete stop the final velocity is zero.
u^2=v^2-2ā*s
u^2=(0)^2 -2(-2.87 m/s^2)*236 m
u^2=0+5.74m/s^2* 236m
u^2=1354.64m^2/s^2
u=√1354.64m^2/s^2
u=36.8m/s (approximate value)
when ever the acceleration is constant you can use one of the following equation to find the required value.
1. v = u + at. (no s)
2. s= 1/2(u+v)t. (no ā)
3. s=ut + 1/2at^2. ( no v)
4. v^2=u^2 + 2āS. (no t). 5. s= vt - 1/2at^2. (no u)
Answer:
Explanation:
mass of 1 L water = 1 kg .
200⁰F = (200 - 32) x 5 / 9 = 93.33⁰C .
260.928 K = 260.928 - 273 = - 12.072⁰C .
water is at higher temperature .
Let the equilibrium temperature be t .
Heat lost by water = mass x specific heat x fall of temperature
= 1 x 4.2 x 10³ x ( 93.33 - t )
Heat gained by copper
= .25 x .385 x 10³ x ( t + 12.072 )
Heat lost = heat gained
1 x 4.2 x 10³ x ( 93.33 - t ) = .25 x .385 x 10³ x ( t + 12.072 )
93.33 - t = .0229 ( t + 12.072)
93.33 - t = .0229 t + .276
93.054 = 1.0229 t
t = 90.97⁰C .
It’s A liquid to a solid because if it’s a liquid they can move but not much and then it becomes a solid because they are packed closely together and are fixed in one position.