Answer:
The temperature is 2541.799 K
Explanation:
The formula for black body radiation is given by the relation;
Q = eσAT⁴
Where:
Q = Rate of heat transfer 56.6
σ = Stefan-Boltzman constant = 5.67 × 10⁻⁸ W/(m²·k⁴)
A = Surface area of the cube = 6×(3.72 mm)² = 8.3 × 10⁻⁵ m²
e = emissivity = 0.288
T = Temperature
Therefore, we have;
T⁴ = Q/(e×σ×A) = 56.6/(5.67 × 10⁻⁸ × 8.3 × 10⁻⁵ × 0.288) = 4.174 × 10¹⁴ K⁴
T = 2541.799 K
The temperature = 2541.799 K.
Answer:
50 N.
Explanation:
On top of a horizontal surface, the normal force acting on an object is equivalent to the force of gravity acting on the object. That is:

The mass of the block is 5 kg and the given force due to gravity is 10 N/kg. Substitute and evaluate:

In conclusion, the normal force acting on the block is 50 N.
Kinetic energy = (1/2) (mass) (speed)²
BUT . . . in order to use this equation just the way it's written,
the speed has to be in meters per second. So we'll have to
make that conversion.
KE = (1/2) · (1,451 kg) · (48 km/hr)² · (1000 m/km)² · (1 hr/3,600 sec)²
= (725.5) · (48 · 1000 · 1 / 3,600)² (kg) · (km·m·hr / hr·km·sec)²
= (725.5) · ( 40/3 )² · ( kg·m² / sec²)
= 128,978 joules (rounded)
The average speed of the bus from Lansing to Detroit is

while the average speed of the bus from Detroit to Lansing is

The distance covered by the bus in the two trips is the same (the distance between the two cities), therefore, the average speed of the round trip can be calculated as the mean of the two speeds: