Answer:
chlorine has higher ionization than carbon
Explanation:
Chlorine is only one row below carbon, but it is three columns to the right in this case the IP of chlorine would be predicted to be greater than the IP of carbon.
Answer:
Ionic Compounds have high boiling and melting points as they're very strong and require a lot of energy to break. The electrostatic forces of attraction between oppositely charged ions lead to the formation of ions. Ionic compounds form crystals. These compounds are brittle and break into small pieces easily.
Explanation:
Answer:
1.45 x 10²³ particles
Explanation:
Given parameters:
Number of moles of carbon = 0.24moles
Unknown:
Number of particles = ?
Solution:
A mole of a substance contains the Avogadro's number of particles.
The Avogadro's number of particles is 6.02 x 10²³
So;
0.24 moles of carbon will contain 0.24 x 6.02 x 10²³ = 1.45 x 10²³ particles
Answer:
a) Se²⁻> S²⁻ > O²
b) Te²⁻ > I- >Cs+
c) Cs+ > Ba²⁺ > Sr²⁺
Explanation:
(a) Se²⁻, S²⁻, O²⁻
In general, ionic radius decreases with increasing positive charge.
As the charge on the ion becomes more positive, there are fewer electrons.
The ion has a smaller radius. In general, ionic radius increases with increasing negative charge.
For ions of the same charge (e.g. in the same group) the size increases as we go down a group in the periodic table
Se²⁻> S²⁻ > O²
(b) Te²⁻, Cs⁺, I⁻
Te²⁻ > I- >Cs+
Te2- hast the biggest size, because of the double negative charge.
Cs+ has the smallest size since it has the most positive charge, compared to Te2- and I-.
(c) Sr²⁺, Ba²⁺, Cs⁺
Cs+ > Ba²⁺ > Sr²⁺
Cs+ has the biggest size, because its more downward (compared to Sr2+) and more to the left (compared) ot Ba2+.
Sr2+ has the smallest size because it's more upwords (compared to Cs+ and Ba2+)
Answer:
Milk's boiling temperature is nearly identical to that of water, 100 degrees Celsius (212 degrees Fahrenheit)
Explanation: