Answer:
Protons: 2.
Electrons: 2.
Neutrons: 2.
Explanation:
Hello,
In this case, since an atom's atomic number is equal to the number of electrons, considering the electron configurations, taking into account that helium-4 is neither positively nor negatively charged, we can infer that the number of electrons equal the number of protons, which in this case are 2, due to the fact that is atomic number is 2.
Moreover, as helium-4's atomic number is 4 as a whole number, we compute the number of neutrons by using the shown below equation:

Regards.
P₄O₁₀ + 6H₂O → 4H₃PO₄
The equation shows us that the molar ratio of
P₄O₁₀ : 6H₂O = 1:6
We also know that one mole of a substance contains 6.02 x 10²³ particles. We can use this to calculate the moles of water.
moles(H₂O) = (5.51 x 10²³) / (6.02 x 10²³)
= 0.92 mole
That means moles of P₄O₁₀ = 0.92 / 6
= 0.15
Each mole of P₄O₁₀ contains 4 moles of P.
moles(P) = 4 x 0.15 = 0.6 mol
Mr of P = 207 grams per mol
Mass of P = 207 x 0.6
= 124.2 grams
add up the mass of protons and neutrons
Answer: A: Has little to no reaction; might turn slightly red in color. B: The liquid grows darker in color to a more reddish tone.
Explanation: I didn’t have the necessary materials to complete the experiment so the teacher told me and I put it in my own words.
<u>Explanation:</u>
The number of moles that are present in a liter of a solution is called Molarity. Mole is the unit of Molarity.The concentration of the solutes that are present in a solution refers to Osmolarity . The unit is osmol. This helps in observing the movement of water from one side to another side of a semipermeable membrane.
The main property of salts that helps to understand the differentiation between the molarity and osmolarity is the salts Ionization. One mole Na+ and one mole of Cl- is produced by the dissociation of a mole of sodium chloride occurs. The diffusion of water is the osmosis. Here, the one molar sodium chloride solution produces a osmotic pressure which is high than one molar glucose solution and this will not undergo dissociation.