Solute is something that is being dissolved { ex : sugar , salt}
Solvent is something that has ability to dissolve things { ex : water}
False because the solvent is present in larger amounts...
Answer is: the missing pressure is 1088.66 mmHg.
Gay-Lussac's Law states that the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 960 mmHg; pressure of the gas.
T₁ = 100°C + 273.15.
T₁ = 373.15 K; temperature of the gas.
T₂ = 150°C + 273.15.
T₂ = 423.15 K.
p₂ = p₁T₂/T₁.
p₂ = 960 mmHg · 423.15 K / 373.15 K.
p₂ = 1088.66 mmHg.
FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :

186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :

Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :

So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :

<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M
Answer:
A:metal
Explanation:
because if a light bulb was placed on metal with force it would light