Answer:
360 Nm
Explanation:
Torque: This is the force that tend to cause a body to rotate or twist. The S.I unit of torque is Newton- meter (Nm).
From the question,
The expression of torque is given as
τ = F×d......................... Equation 1
Where, τ = Torque, F = force, d = distance of the bar perpendicular to the force.
Given: F = 40 N, d = 9 m
Substitute into equation 1
τ = 40(9)
τ = 360 Nm.
If the distance between two objects decrease and the masses of the objects remain the same, then the force of gravity between the two objects
<u>Answer:</u>
increases
Explanation:
The formula of gravitational force is given as:
F=G Mm/r^2
G = gravitational constant
M, m = Masses of two different objects in which the force is acting.
r = distance between both the objects.
As we can see from the formula that the force of gravity is inversely proportional to the square of the distance between both objects.
When the distance between both objects with the same masses decreases the gravitational force between them increases. Hence the correct answer is option B.
Illamends had the exact same answer from a similar question. Credit goes to her
The formula for orbital speed v is v=(G*Me/r)^1/2
Wher G= 6.67E-11, Me= 6E24, r= Re+h= 6.4E6+740000
putting values in the formula we get
v= 7486.7 m/s or v= 7.4867 km/s
Differentiate the expression, to obtain expression for velocity. Set velocity to 0, this when max height is reached. Obtain the tmax from that expression.
<span>h(t) = –16t² + 32t + 6
</span><span>h'(t) = –32t² + 32
0 = </span>–32t² + 32
t max= 1
hmax = <span> –16(1)² + 32(1) + 6
hmax = 22
Therefore, first option is the correct answer.</span>