All electromagnetic waves travel in vacuum (space) at the speed of light (3 * 10^8 m/s). Radio waves is just a member of the electromagnetic spectrum. All electromagnetic waves follow the wave equation: speed = frequency * wavelength. With all electromagnetic waves, the speed in space is the same.
Answer:
4 hertz
Explanation:
The defination of freqyency = the total no of cycle made by a wave in one second .
so,
cycle or vibrations=60
tame taken = 15
now,
frequency = no. of cycle / time taken
= 60/15
=4 hertz
hence, the its frequency = 4hertz
Remember Newton's second law: F=ma
to get the force in newtons, mass should be in kg and acceleration in m/s^2
conveniently, we don't need to convert units
we just need to multiply the two to get the force
65* 0.3 = 19.5 kg m/s^2 or N
if significant digit is an issue, the least number if sig figs is 1 so the answer would be 20 N
Answer:
At a deceleration of 60g, or 60 times the acceleration due to gravity a person will travel a distance of 0.38 m before coing to a complete stop
Explanation:
The maximum acceleration of the airbag = 60 g, and the duration of the acceleration = 36 ms or 36/1000 s or 0.036 s
To find out how far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g
we write out the equation of motion thus.
S = ut + 0.5at²
wgere
S = distance to come to complete stop
u = final velocoty = 0 m/s
a = acceleration = 60g = 60 × 9.81
t = time = 36 ms
as can be seen, the above equation calls up the given variable as a function of the required variable thus
S = 0×0.036 + 0.5×60×9.81×0.036² = 0.38 m
At 60g, a person will travel a distance of 0.38 m before coing to a complete stop
The period of a simple pendulum is given by:

where L is the length of the pendulum and

is the gravitational acceleration. As we can see, the period of a simple pendulum depends only on its length.