Answer:
2.05mg Fe/ g sample
Explanation:
In all chemical extractions you lose analyte. Recovery standards are a way to know how many analyte you lose.
In the problem you recover 3.5mg Fe / 1.0101g sample: <em>3.465mg Fe / g sample. </em>As real concentration of the standard is 4.0 mg / g of sample the percent of recovery extraction is:
3.465 / 4×100 = <em>86,6%</em>
As the recovery of your sample was 1.7mg Fe / 0.9582g, the Iron present in your sample is:
1.7mg Fe / 0.9582g sample× (100/86.6) = <em>2.05mg Fe / g sample</em>
<em></em>
I hope it helps!
5.58 X
Litres is the volume, in liters, occupied by 0.015 molecules of oxygen at STP.
Explanation:
Data given:
molecules of oxygen = 0.015
number of moles of oxygen =?
temperature at STP = 273 K
Pressure at STP = 1 atm
volume = ?
R (gas constant) = 0.08201 L atm/mole K
to convert molecules to moles,
number of moles = 
number of moles = 2.49 x 
Applying the ideal gas law since the oxygen is at STP,
PV = nRT
rearranging the equation:
V = 
putting the values in the rearranged equation:
V = 
V = 5.58 X
Litres.
For every 1 molecule of Magnesium hydroxide or Mg(OH)2 there will be 2 molecules of HCl neutralized.
If molar mass of magnesium hydroxide is 58.3197g/mol, the amount of mol in 5.50 g magnesium hydroxide should be: 5.50g/ (<span>58.3197g/mol)= 0.0943mol.
Then, the amount of HCl molecule neutralized would be: 2* </span>0.0943mol= 0.18861 mol
If molar mass of HCl is 36.46094 g/mol, the mass of the molecule would be: 0.18861 mol* 36.46094g/mol = 6.88grams
The ribosomes are the ones delivering the products of the endoplasmic reticulum