Answer:
Mn is the oxidizing agent.
N is the reducing agent.
Explanation:
Hello!
In this case, according to the undergoing chemical reaction, it is seen that the manganese in KMnO4 has an oxidation state of 7+, in MnSO4 of 2+ and nitrogen in KNO2 is 3+ and in KNO3 is 5+; thus we have the following half-reactions:

Thus, since manganese is undergoing a decrease in the oxidation state, we infer it is the oxidizing agent whereas nitrogen, undergoing an increase in the oxidation state is the reducing agent.
Best regards!
The end product will depend upon
a) the amount of the reagent taken
b) the final treatment of the reaction
If we have just taken methylmagnesium iodide and p-hydroxyacetophenone, then we will get methane and hydroxyl group substituted with MgI in place of hydrogen
Figure 1
However if we have taken excess of methylmagnesium iodide which is Grignard's reagent followed by hydrolysis we will get different product
Figure 2
2NH₃(g) + CO₂(g) → CO(NH₂)₂(s) + H₂O(l)
is the balanced equation for the synthesis of urea.
Answer:
19.8 kg of C₂H₂ is needed
Explanation:
We solve this by a rule of three:
If 1251 kJ of heat are relased in the combustion of 1 mol of acetylene
95.5×10⁴ kJ of heat may be released by the combustion of
(95.5×10⁴ kJ . 1) /1251kJ = 763.4 moles of C₂H₂
Let's convert the moles to mass → 763.4 mol . 26 g/1 mol = 19848 g
If we convert the mass from g to kg → 19848 g . 1kg / 1000g = 19.8 kg