Answer:
Adding H₂O(g) to the system.
Explanation:
- Le Châtelier's principle states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
<u><em>1) Removing H₂O(g) from the system:</em></u>
- This will decrease the concentration of the reactants side, so the reaction will be shifted to the left side to suppress the removal of H₂O(g) from the system.
<u><em>2) Adding CH₃CHO(g) to the system :</em></u>
- This will increase the concentration of the products side, so the reaction will be shifted to the left side to suppress the adding CH₃CHO(g) to the system.
<u><em>3) Removing C₂H₂(g) from the system:</em></u>
- This will decrease the concentration of the reactants side, so the reaction will be shifted to the left side to suppress the removal of C₂H₂(g) from the system.
<u><em>4) Adding H₂O(g) to the system:</em></u>
- This will increase the concentration of the reactants side, so the reaction will be shifted to the right side to suppress the addition of H₂O(g) to the system.
- <u><em>So, it is the right choice.</em></u>
Answer:
NH4+
Explanation:
A Lewis base is a substance with the ability to share or give pairs of electrons.
The NH4 + ammonium ion donates a proton, therefore the ammonium ion is a Lewis acid.
<span>You need to have NAD+ as a source of oxidation for the pyruvate, as well as a supply of coenzyme A. CO2 is released by the pyruvate as a carboxyl group is removed</span>
When perfume is sprayed in a room the particles of perfume diffuse with the particles in the air.
Answer : The temperature of the air in the tire is, 341 K
Explanation :
Gay-Lussac's Law : It is defined as the pressure of the gas is directly proportional to the temperature of the gas at constant volume and number of moles.
or,
where,
= initial pressure = 198 kPa
= final pressure = 225 kPa
= initial temperature =
= final temperature = ?
Now put all the given values in the above equation, we get:
Therefore, the temperature of the air in the tire is, 341 K