Answer:
A.) 8 m/s
B.) 7.0 m
Explanation:
Given that a block is given an initial velocity of 8.0 m/s up a frictionless 28° inclined plane.
(a) What is its velocity when it reaches the top of the plane?
Since the plane is frictionless, the final velocity V will be the same as 8 m/s
The velocity will be 8 m/s as it reaches the top of the plane.
(b) How far horizontally does it land after it leaves the plane?
For frictionless plane,
a = gsinø
Acceleration a = 9.8sin28
Acceleration a = 4.6 m/s^2
Using the third equation of motion
V^2 = U^2 - 2as
Substitute the a and the U into the equation. Where V = 0
0 = 8^2 - 2 × 4.6 × S
9.2S = 64
S = 64/9.2
S = 6.956 m
S = 7.0 m
Answer:
a = 2d / t²
Explanation:
d = ½ at²
Multiply both sides by 2:
2d = at²
Divide both sides by t²:
a = 2d / t²
Answer:
q = 3.6 10⁵ C
Explanation:
To solve this exercise, let's use one of the consequences of Gauss's law, that all the charge on a body can be considered at its center, therefore we calculate the electric field on the surface of a sphere with the radius of the Earth
r = 6 , 37 106 m
E = k q / r²
q = E r² / k
q =
q = 4.5 10⁵ C
Now let's calculate the charge on the planet with E = 222 N / c and radius
r = 0.6 r_ Earth
r = 0.6 6.37 10⁶ = 3.822 10⁶ m
E = k q / r²
q = E r² / k
q =
q = 3.6 10⁵ C
The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.
For A 53 g ice cube at −30◦C is dropped into a container of water at 0◦C, the amount of water that freezes onto the ice? is mathematically given as
x = 9.93 g
<h3>What is the amount of water that freezes onto the ice?</h3>
Where
Energy received = energy given out
Generally, the amount of water is mathematically given as
(53)(0.5)(30) = (80)(x)
Therefore
x = (49)(0.5)(16)/(80)
x = 9.93 g
In conclusion, the mass of water
x = 9.93 g
Read more about mass
brainly.com/question/15959704