Answer:
Squids = 450 - 490 nm (Moderate Frequency) (Blue)
Bees = 300 - 650 nm (Lower Frequency Bands)
Frogs = 280 - 580 nm (Very Low Frequency)
Explanation:
All of the above mentioned ranges are compared to that of humans.
I'm just surprised a little bit in the imagination that how these organisms see the world through their unique eyes. On the other hands, they are evolved like this just like we do so that may not be surprising enough. SIKE
Answer:
The magnetic field is strongest at the center and weakest between the two poles just outside the bar magnet. The magnetic field lines are densest at the center and least dense between the two poles just outside the bar magnet.
Explanation:
Answer:
Explanation:
Given
Charge of first Particle 
Charge of second Particle 
distance between them 

magnetic field due to first charge at mid-way between two charged particles is



(away from it)
Electric field due to 


(towards it)

(away from first charge)
For astronomical objects, the time period can be calculated using:
T² = (4π²a³)/GM
where T is time in Earth years, a is distance in Astronomical units, M is solar mass (1 for the sun)
Thus,
T² = a³
a = ∛(29.46²)
a = 0.67 AU
1 AU = 1.496 × 10⁸ Km
0.67 * 1.496 × 10⁸ Km
= 1.43 × 10⁹ Km
(1) Doubling of the current through the wire will result in doubling of its magnetic field.
The magnetic field around a wire is a function of the current I and radial distance r

(with mu denoting the magnetic permeability of the medium). So, B is directly proportional to I. The field magnitude will double with the doubled current from 5A to 10A
(2) Using the same formula as in (1), we can see that the magnetic field is inversely proportional to the radial distance from the wire. So, a particle at 20cm will experience half the magnitude compared to a particle at 10cm.
(3) Answer
If a particle with a charge q moves through a magnetic field B with velocity v, it will be acted on by the magnetic force

So, a particle with charge -2uC will experience a magnetic force of same magnitude but opposite direction (and perpendicular to B) as compared to a particle with a charge of 2uC