Palm of your hand should be the correct answer if i remember correctly
Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,
Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.
Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
A mountain range because an ocean ridge is an underwater mountain hope this helps you
Hi there!
Use the equation:
Where m2 and v2 deal with the larger object, and m1 and v1 with the smaller object. Plug in the given values:
v2 = ?
m1 = 0.048 kg (converted)
m2 = 2.95
v1 = 391
Answer:
Isn't love a social construct?
Explanation: