C., cause stars aren't located in earth's atmosphere or " the interior part of Earth" and daily horoscope is a more astrology thing, and Air Force pilot on a Naval carrier? Come on now.
Answer:
The block didn't slide due to balancing of gravitational force with friction force
Explanation:
When the block was given a flick the force provided an acceleration to it and it moved up the inclined plane. when the block reached top it was expected that it would slide back but it didn't this happened because of the frictional force acting on the bottom the block which was balancing the gravitational force component along the plane and this prevented sliding back of the block.
static friction was balancing mg*sin(theta)
fs = mg*sin(theta)
There are two particular cases, the first is when Object A is attracted to the neutral wall. This would indicate that the object is not neutral, as there is an attraction.
At the same time we know that Object A is attracted to an object B. And therefore, the load of A must be opposite to that of B. Remember that opposite charges attract each other. If the charge of object B is positive, then the charge of object A will be negative.
Option B is correct: It has a negative charge.
Answer:
(a) θ = 33.86°
(b) Ay = 49.92 N
Explanation:
You have that the magnitude of a vector is A = 89.6 N
The x component of such a vector is Ax = 74.4 N
(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:
(1)
Ax: x component of vector A
A: magnitude of vector A
θ: angle between vector A and the x axis
You solve the equation (1) for θ, by using the inverse of cosine function:

the angle between the A vector and the x axis is 33.86°
(b) The y component of the vector is given by:

the y comonent of the vecor is Ay = 49.92 N
Answer:
B
Explanation:
You always want to test as many samples as possible