The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4
Is D
is D because the inner layers are the Core, Radiative Zone and Convection Zone.
Answer: 9 days
Explanation:
Let the rate of Leaf growth <em>r</em> be defined as,
= 
where <em>A</em> is initial area of the leaf, <em>A1</em> is the final area of the leaf and<em> t</em> is the time taken for the increase in Area.
- Express the proportional relationship in equation.
Given that rate of leaf growth, r is proportional to the surface area of the leaf A. we have r ∝ A.
r = kA, where k is the rate constant.
therefore, k = 
when A = 2
, A1 = 3
so k = 
=
÷ 2
= 0.33 ÷ 2
k = 0.167
- After calculating the rate constant k, we then find the time t when A1 is 5

- we have r = k × A1 =

so, 0.167 × 2 = 
0.33 =
.
t = 3/0.33
Therefore, t = 9 days.
Answer:
Lines of credit are unsecured loans. That means the bank is taking a huge risk. The bank has to be certain the borrower has a credit history that indicates (s)he will pay back the loan
Answer:
The third image
Explanation:
The one with the thumb pointing to the right