Answer:
Explanation:
One charge is situated at x = 1.95 m . Second charge is situated at y = 1.00 m
These two charges are situated outside sphere as it has radius of .365 m with center at origin. So charge inside sphere = zero.
Applying Gauss's theorem
Flux through spherical surface = charge inside sphere / ε₀
= 0 / ε₀
= 0 Ans .
Answer:
t = 23.255 s, x = 2298.98 m, v_y = - 227.90 m / s
Explanation:
After reading your extensive writing, we are going to solve the approach.
The initial speed of the plane is 250 miles / h and it is at an altitude of 2650 m; In general, planes fly horizontally for launch, therefore this is the initial horizontal speed.
As there is a mixture of units in different systems we are going to reduce everything to the SI system.
v₀ₓ = 250 miles h (1609.34 m / 1 mile) (1 h / 3600 s) = 111.76 m / s
y₀ = 2650 m
Let's set a reference system with the x-axis parallel to the ground, the y-axis is vertical. As time is a scalar it is the same for vertical and horizontal movement
Y axis
y = y₀ + v₀ t - ½ g t²
the initial vertical velocity when the cargo is dropped is zero and when it reaches the floor the height is zero
0 = y₀ + 0 - ½ g t²
t =
t = √(2 2650/ 9.8)
t = 23.255 s
Therefore, for the cargo to reach the desired point, it must be launched from a distance of
x = v₀ₓ t
x = 111.76 23.255
x = 2298.98 m
at the point and arrival the speed is
vₓ = v₀ₓ = 111.76
vertical speed is
v_y = v_{oy} - gt
v_y = 0 - gt
v_y = - 9.8 23.25 555
v_y = - 227.90 m / s
the negative sign indicates that the speed is down
in the attachment we have a diagram of the movement
The peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
<h3>Relationship between electric and magnetic field</h3>
The relationship between electric and magnetic field at a given peak electric field is given as;
c = (E₀) / (B₀)
where;
- c is speed of light
- E₀ is the peak electric field
- B₀ is the peak magnetic field
B₀ = E₀ / c
B₀ = (2.9) / (3 x 10⁹)
B₀ = 9.67 x 10⁻¹⁰ T
Thus, the peak magnetic field of the electromagnetic wave in the red part of the visible spectrum is 9.67 x 10⁻¹⁰ T.
Learn more about peak magnetic field here: brainly.com/question/24487261