The statement that best explains why xenon has a higher boiling point than neon is that xenon has more electrons than neon.
<h3>What are intermolecular forces?</h3>
The term intermolecular forces are the force that hold matter together in a particular state such as solid liquid or gas. The more the electrons present, the greater the polarizability and the greater dispersion forces at work.
Thus, the statement that best explains why xenon has a higher boiling point than neon is that xenon has more electrons than neon.
Learn more about intermolecular forces:brainly.com/question/9007693
#SPJ1
Answer: O potássio possui apenas um elétron de valência. ... Considerando que o cálcio possui dois elétrons de valência, requer mais energia para a remoção de um elétron de valência. Devido a esse potássio, é mais reativo que o cálcio.
Explanation:
Answer:
21.5 g.
Explanation:
Hello!
In this case, since the reaction between the given compounds is:

We can see that according to the law of conservation of mass, which states that matter is neither created nor destroyed during a chemical reaction, the total mass of products equals the total mass of reactants based on the stoichiometric proportions; in such a way, we first need to compute the reacted moles of Li3P as shown below:

Now, the moles of Li3P consumed by 15 g of Al2O3:

Thus, we infer that just 0.29 moles of 0.73 react to form products; which means that the mass of formed products is:

Therefore, the total mass of products is:

Which is not the same to the reactants (53 g) because there is an excess of Li₃P.
Best Regards!
Answer: kg= 0.37
Explanation:
Use the molality formula.
M= m/kg