1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
3 years ago
8

On the Apollo 14 mission to the moon, astronaut Alan Shepard hit a golf ball with a golf club improvised from a tool. The free-f

all acceleration on the moon is 1/6 of its value on earth. Suppose he hit the ball with a speed of 25 m/s at an angle 30° above the horizontal. a. How long was the ball in flight? b. How far did it travel? c. Ignoring air resistance, how much farther would it travel on the moon than on earth
Physics
1 answer:
aliya0001 [1]3 years ago
5 0

Answer:

15.3 s and 332 m

Explanation:

With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon

    gm = 1/6 ge

    gm = 1/6  9.8 m/s² = 1.63 m/s²

We calculate the range

    R = Vo² sin 2θ  / g

    R = 25² sin (2 30) / 1.63

    R= 332 m

We will calculate the time of flight,

   Y = Voy t – ½ g t2  

   Voy = Vo sin θ

When the ball reaches the end point has the same initial  height Y=0

0 = Vo sin  t – ½  g t2

0 = 25 sin (30)  t – ½ 1.63 t2

0= 12.5 t –  0.815 t2

We solve the equation

0= t ( 12.5 -0.815 t)

 t=0 s

t= 15.3 s

The value of zero corresponds to the departure point and the flight time is 15.3 s

Let's calculate the reach on earth

R2 = 25² sin (2 30) / 9.8

R2 = 55.2 m

R/R2 = 332/55.2

R/R2 = 6

Therefore the ball travels a distance six times greater on the moon than on Earth

You might be interested in
Please help! Average speed. Show work!
KiRa [710]

Answer:

3.78 m/s

Explanation:

Recall that the formula for average speed is given by

Speed = Distance ÷ Time taken

Where,

Speed = we are asked to find this

Distance = given as 340m

Time taken = 1.5 min = 1.5 x 60 = 90 seconds

Substituting the values into the equation:

Speed = Distance ÷ Time taken

= 340 meters  ÷ 90 seconds

= 3.777777 m/s

= 3.78 m/s (round to nearest hundredth)

3 0
3 years ago
Read 2 more answers
Suppose you apply a force of 75 N to a 25-kg object. What will the acceleration of the object b? (Remember a=F/m)
Vlada [557]

I would choose the option B.

F = ma

a = 75 / 25 = 3 m/s^2

8 0
2 years ago
(a) Calculate the magnitude of the gravitational force exerted by Mars on a 80 kg human standing on the surface of Mars. (The ma
andrew11 [14]

Answer:

a) F=1.044\times 10^9\ N

b)F'=1.044\times 10^9\ N

c) F_p=1.0672\times10^{-7}\ N

d) Treat the humans as though they were points or uniform-density spheres.

Explanation:

Given:

  • mass of Mars, M=6.4\times 10^{23}\ kg
  • radius of the Mars, r=3.4\times 10^{6}\ m
  • mass of human, m=80\ kg

a)

Gravitation force exerted by the Mars on the human body:

F=G.\frac{M.m}{r^2}

where:

G=6.67 \times 10^{-11}\ m^3.kg^{-1}.s^{-2} = gravitational constant

F=6.67\times10^{-11}\times \frac{6.4\times 10^{23}\times 80}{(3.4\times 10^{6})^2}

F=1.044\times 10^9\ N

b)

The magnitude of the gravitational force exerted by the human on Mars is equal to the force by the Mars on human.

F'=F

F'=1.044\times 10^9\ N

c)

When a similar person of the same mass is standing at a distance of 4 meters:

F_p=6.67\times10^{-11}\times \frac{80\times 80}{4}

F_p=1.0672\times10^{-7}\ N

d)

The gravitational constant is a universal value and it remains constant in the Universe and does not depends on the size of the mass.

  • Yes, we have to treat Mars as spherically symmetric so that its center of mass is at its geometric center.
  • Yes, we also have to ignore the effect of sun, but as asked in the question we have to calculate the gravitational force only due to one body on another specific body which does not brings sun into picture of the consideration.
4 0
3 years ago
What frequency is received by a person watching an oncoming ambulance moving at 110 km/h and emitting a steady 800-Hz sound from
Bas_tet [7]

Answer:

check photo for solve

Explanation:

7 0
3 years ago
After striking both mirrors, at what angle relative to the incoming ray does the outgoing ray emerge?
PIT_PIT [208]
The appropriate response is Zero degrees. The beam will leave the two mirrors along a way parallel to the one it came in on. This is the guideline of the corner reflector, which is frequently utilized as a radar target. Take note of that the corner reflector utilizes three reflecting surfaces (that are set up at 90o from each other) rather than the two like are being utilized here. Wikipedia has a truly awesome drawing that shows this two-dimentional issue pleasantly. A moment connection is given to the article on the corner reflector and the 3-D angles.
4 0
3 years ago
Other questions:
  • Find a unit vector in the direction in which f increases most rapidly at P and give the rate of chance of f in that direction; f
    13·2 answers
  • Describe a device that transforms thermal energy into<br> another useful form.<br> tes that
    8·1 answer
  • Which of these is a chemical change?
    10·2 answers
  • 1-A car with momentum 19016 kg*m/s has a mass of 1300kg. What is the speed
    11·1 answer
  • laser light hits two very narrow slits that are separated by 0.1mm adn is viewwed on a screen 2m downstream. Sketch on the axis
    5·2 answers
  • Jada was walking home for 30 mins. How fast was she walking, if her house is 4 km away fron school?
    6·1 answer
  • If a force of 40N is applied for 0.2 sec to change the momentum of a volleyball, what is the impulse?
    9·1 answer
  • More crossword cr a p! :D (Science)
    8·1 answer
  • An object’s mass increases its
    15·1 answer
  • There are 8 stages to work through in conflict resolution if one is to reach resolution.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!