Answer:
I'm a bit confused on where the question is. Perhaps re-write it in the comments? I'd love to help but this seems more like an answer than a question xD
Explanation:
a)
A: Copper
B: CuO
C: 
D: $\mathrm{CuCO_3}$
E: $\mathrm{CO_2}$
F: $\mathrm{Cu(NO_3)_2}$
b)
$\mathrm{CuO+ H_2SO_4}\rightarrow \mathrm{CuSO_4 + H_2O}$
c)
$\mathrm{CuCO_3+ 2HNO_3}\rightarrow \mathrm{Cu(NO_3)_2+ CO_2+ H_2O}$
The effective nuclear charge is an innate property of a specific element. It is the pull of force that an electron feels from the nucleus. It is related to the valence electron by the equation: Z* = Z-S, where Z* is the effective nuclear charge, Z is the atomic number and S is the shielding constant.
For the following elements in the choices, these are their values of Z*:
Aluminum - +12.591
Beryllium - +1.912
Hydrogen - +1
Carbon - +4
The effective nuclear charge of Boron is +3. Thus, the answers are Aluminum and Carbon.
Answer: -
Concentration of PbI₂ = 1.5 x 10⁻³ M
PbI₂ dissociates in water as
PbI₂ ⇄ Pb²⁺ + 2 I⁻
So PbI₂ releases two times the amount of I⁻ as it's own concentration when saturated.
Thus the molar concentration of iodide ion in a saturated PbI₂ solution = [ I⁻] =
= 1.5 x 10⁻³ x 2 M
= 3 x 10⁻³ M
PbI₂ releases the same amount of Pb²⁺ as it's own concentration when saturated.
[Pb²⁺] = 1.5 x 10⁻³ M
So solubility product for PbI₂
Ksp = [Pb²⁺] x [ I⁻]²
=1.5 x 10⁻³ x (3 x 10⁻³)²
= 4.5 x 10⁻⁹