Rubbing both pieces cause each piece to have a negative charge.
When two parts have the same they repel each other, so holding one piece up tot he end of the other piece would push it away.
Because one piece is held in the middle by a string, it would rotate the piece in a circle.
If they held the piece to the other end of the one held by a string it would start to rotate in the opposite direction.
Answer:
v=0.94 m/s
Explanation:
Given that
M= 5.67 kg
k= 150 N/m
m=1 kg
μ = 0.45
The maximum acceleration of upper block can be μ g.
a= μ g ( g = 10 m/s²)
The maximum acceleration of system will ω²X.
ω = natural frequency
X=maximum displacement
For top stop slipping
μ g =ω²X
We know for spring mass system natural frequency given as

By putting the values

ω = 4.47 rad/s
μ g =ω²X
By putting the values
0.45 x 10 = 4.47² X
X = 0.2 m
From energy conservation


150 x 0.2²=6.67 v²
v=0.94 m/s
This is the maximum speed of system.
<span>The sun's circumference is about 2,713,406 miles (4,366,813 km). The total volume of the sun is 1.4 x 1027 cubic meters. About 1.3 million Earths could fit inside the sun. The mass of the sun is 1.989 x 1030 kilograms, about 333,000 times the mass of the Earth. hope this helps! :) please chose brainlest
</span>
The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data: