The kinetic energy (KE) is 250 J and the gravitational potential energy (GPE) is 392 J
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)
The minimum speed of the particle is the Speed of light in glass is c/μ=2×108m/s.
<h3>Why is the refractive index important?</h3>
The higher the refractive index the slower the light travels, which causes a correspondingly increased change in the direction of the light within the material. What this means for lenses is that a higher refractive index material can bend the light more and allow the profile of the lens to be lower.
Refractive index values are usually determined at standard temperature. A higher temperature means the liquid becomes less dense and less viscous, causing light to travel faster in the medium.
To learn more about the refractive index visit the link
brainly.com/question/23750645
#SPJ4
Answer:
D is the answer wave behavior