1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dominik [7]
4 years ago
13

An AM radio station broadcasts isotropically (equally in all directions) with an average power of 3.40 kW. A receiving antenna 6

0.0 cm long is at a location 4.00 mi from the transmitter. Compute the amplitude of the emf that is induced by this signal between the ends of the receiving antenna.
Physics
1 answer:
lara [203]4 years ago
6 0

To solve the problem we will apply the concepts related to the Intensity as a function of the power and the area, as well as the electric field as a function of the current, the speed of light and the permeability in free space, as shown below.

The intensity of the wave at the receiver is

I = \frac{P_{avg}}{A}

I = \frac{P_{avg}}{4\pi r^2}

I = \frac{3.4*10^3}{4\pi(4*1609.34)^2} \rightarrow 1mile = 1609.3m

I = 6.529*10^{-6}W/m^2

The amplitude of electric field at the receiver is

I = \frac{E_{max}^2}{2\mu_0 c}

E_{max}= \sqrt{2I\mu_0 c}

The amplitude of induced emf by this signal between the ends of the receiving antenna is

\epsilon_{max} = E_{max} d

\epsilon_{max} = \sqrt{2I \mu_0 cd}

Here,

I = Current

\mu_0 = Permeability at free space

c = Light speed

d = Distance

Replacing,

\epsilon_{max} = \sqrt{2(6.529*10^{-6})(4\pi*10^{-7})(3*10^{8})(60.0*10^{-2})}

\epsilon_{max} = 0.05434V

Thus, the amplitude of induced emf by this signal between the ends of the receiving antenna is 0.0543V

You might be interested in
Tracy stands on a skateboard and tosses her backpack to her friend who is standing in front of her. Which best describes the acc
madreJ [45]

Answer:

A

Explanation:

It is less than the acceleration of the backpack because abs has a greater mass.

5 0
3 years ago
What is the astronomy made of
vekshin1

Answer:

Astronomers like to call all material made up of protons, neutrons and electrons "baryonic matter". Until about thirty years ago, astronomers thought that the universe was composed almost entirely of this "baryonic matter", ordinary atoms.

Explanation:

4 0
3 years ago
The Sun's surface temperature is closest to _____.
garik1379 [7]
The answer is b because the sun's surface temperature is 5,778 K.
5 0
4 years ago
Read 2 more answers
A pendulum of length L=36.1 cm and mass m=168 g is released from rest when the cord makes an angle of 65.4 degrees with the vert
pychu [463]

(a) -0.211 m

At the beginning the mass is displaced such that the length of the pendulum is L = 36.1 cm and the angle with the vertical is

\theta=65.4^{\circ}

The projection of the length of the pendulum along the vertical direction is

L_y = L cos \theta = (36.1 cm)(cos 65.4^{\circ})=15.0 cm

the full length of the pendulum when the mass is at the lowest position is

L = 36.1 cm

So the y-displacement of the mass is

\Delta y = 15.0 cm - 36.1 cm = -21.1 cm = -0.211 m

(b) 0.347 J

The work done by gravity is equal to the decrease in gravitational potential energy of the mass, which is equal to

\Delta U = mg \Delta y

where we have

m = 168 g = 0.168 kg is the mass of the pendulum

g = 9.8 m/s^2 is the acceleration due to gravity

\Delta y = 0.211 m is the vertical displacement of the pendulum

So, the work done by gravity is

W=(0.168 kg)(9.8 m/s^2)(0.211 m)=0.347 J

And the sign is positive, since the force of gravity (downward) is in the same direction as the vertical displacement of the mass.

(c) Zero

The work done by a force is:

W=Fd cos \theta

where

F is the magnitude of the force

d is the displacement

\theta is the angle between the direction of the force and the displacement

In this situation, the tension in the string always points in a radial direction (towards the pivot of the pendulum), while the displacement of the mass is tangential (it follows a circular trajectory): this means that the tension and the displacement are always perpendicular to each other, so in the formula

\theta=90^{\circ}, cos \theta = 0

and so the work done is zero.

5 0
3 years ago
When a driver presses the brake pedal, his car can stop with an acceleration of -5.4m/s^2. How far will the car travel while com
Dahasolnce [82]
Information that is given:
a = -5.4m/s^2
v0 = 25 m/s
---------------------
S = ?
Calculate the S(distance car traveled) with the formula for velocity of decelerated motion:
v^2 = v0^2 - 2aS
The velocity at the end of the motion equals zero (0) because the car stops, so v=0.
0 = v0^2 - 2aS
v0^2 = 2aS
S = v0^2/2a
S = (25 m/s)^2/(2×5.4 m/s^2)
S = (25 m/s)^2/(10.8 m/s^2)
S = (625 m^2/s^2)/(10.8 m/s^2)
S = 57.87 m
3 0
3 years ago
Other questions:
  • A student pulls a box across a horizontal floor at a constant speed of 4.0 meters per second by exerting a constant horizontal f
    10·2 answers
  • The amount of momentum that an object has is dependent on what ____ is moving and how ___ it is moving.
    12·2 answers
  • Consider the following neutral electron configurations in which 'n' has a constant value. Which configuration would belong to th
    5·1 answer
  • PLEASE HELP ME THANK YOU
    12·1 answer
  • The average velocity of a tennis ball is measured during serving and found to be 216 km/hr.
    9·1 answer
  • The moon is 3x10^5 km away from Nepal and the mass of the moon is 7x10^22 kg. Calculate the force with which the Moon pulls ever
    15·1 answer
  • Which of the following actions does NO work?
    5·2 answers
  • What is the average income of an osteologist? (Anatomy)
    6·1 answer
  • Which of the following are examples of etiquette? Check all of the boxes that apply.
    7·1 answer
  • Which of these is not a standard unit?<br> a. second <br> b. metre<br> c. hand span <br> d. gram
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!