Explanation:
1) 1 : to Prevent a burning we use tongs
2:it can burn our skin hoa it's help
2) 1: because pulley helps in water draw from a well
3) 1: second class lever has mechanical advantage more than one as load is in between fulcrum an effort making the effort arm longer than the load arm
Answer:
(A). The rotational momentum of the flywheel is 12.96 kg m²/s.
(B). The rotational speed of sphere is 400 rad/s.
Explanation:
Given that,
Mass of disk = 10 kg
Radius = 9.0 cm
Rotational speed = 320 m/s
(A). We need to calculate the rotational momentum of the flywheel.
Using formula of momentum


Put the value into the formula


(B). Rotation momentum of sphere is same rotational momentum of the flywheel
We need to calculate the magnitude of the rotational speed of sphere
Using formula of rotational momentum




Put the value into the formula


Hence, (A). The rotational momentum of the flywheel is 12.96 kg m²/s.
(B). The rotational speed of sphere is 400 rad/s.
Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s