1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
2 years ago
14

Pitbulllover101

Physics
2 answers:
mafiozo [28]2 years ago
7 0

Some of the heavy particles bounced off the foil, because there are positive particles spread throughout the atom

MissTica2 years ago
4 0

Answer:

Some of the heavy particles bounced off the foil, because there is a dense, positive area in the atom.

Explanation:

In Rutherford experiment following is the observations made by the Rutherford

1). Major part of the alpha particles will go out undeviated which shows that major portion of the atoms vacant or empty space

2). Few part of the alpha particle moves out with deviation in path which shows that electrons moves in different shells and when alpha particles pass through a given electron then it will show the deviation in path

3). very few alpha particles will get deviated by 180 degree and returns to original path which shows the presence of nucleus. So nucleus is made up of positive charge which is concentrated at very small space

so here correct answer would be

Some of the heavy particles bounced off the foil, because there is a dense, positive area in the atom.

You might be interested in
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
A chart labeled table A : effect of height on temperature with initial temperature as 25 degrees Celsius, mass w is 1.0 kilogram
o-na [289]

Answer:

100m: 4.9 kJ

200m: 9.8 kJ

1000m: 49.1 kJ

Explanation:

edge2020

7 0
2 years ago
Read 2 more answers
How does the sun's energy most directly influence precipitation in an area?
topjm [15]
The sun's energy influences climate in various ways. For example the latitudes at the equator receive more energy from the sun and therefore have warmer temperatures, On the other hand the sun's energy influences precipitation in a climate by driving the water cycle which determines precipitation.The sun is what makes the water cycle take place. That is the sun provides energy or heat to the earth; the heat causes liquid and frozen water to evaporate into water vapor gas, which rises high in the sky to form clouds ( precipitation), that in turn give us rain
5 0
2 years ago
An object propelled upwards with an acceleration of 2.0 m / s ^ 2 is launched from rest. After 6 seconds the fuel runs out. Dete
dezoksy [38]

Answer:43.34 m

Explanation:

Given

acceleration(a)=2 m/s^2

Initial Velocity(u)=0 m/s

After 6 s fuel runs out

Velocity after 6 s

v=u+at

v=0+2\times 6=12 m/s

After this object will start moving under gravity

height reached in first 6 s

s=ut+\frac{at^2}{2}

s=0+\frac{2\times 6^2}{2}

s=36 m

After fuel run out distance traveled in upward direction is

v^2-u^2=2as_0

here v=0

u=12 m/s

a=9.8 m/s^2

0-12^2=2(-9.8)(s)

s_0=\frac{144}{2\times 9.8}=7.34 m

s+s_0=36+7.34=43.34 m

7 0
3 years ago
swings a 5.5 kg cup of water in a vertical circle of radius 1.9 m. (a) What minimum speed must the cup have in this demo if the
Tanzania [10]

Answer:

4.32

Explanation:

The centripetal acceleration of any object is given as

A(cr) = v²/r, where

A(c) = the centripetal acceleration

v = the linear acceleration

r = the given radius, 1.9 m

Since we are not given directly the centripetal acceleration, we'd be using the value of acceleration due to gravity, 9.8. This means that

9.8 = v²/1.9

v² = 1.9 * 9.8

v² = 18.62

v = √18.62

v = 4.32 m/s

This means that, the minimum speed the cup must have so as not to get wet or any spill is 4.32 m/s

6 0
2 years ago
Other questions:
  • Based on their locations on the periodic table, which best compares the properties of the metalloids arsenic (As) and antimony (
    15·2 answers
  • How much meters is a mile
    13·1 answer
  • An atom of element X has one more shell of electrons than an atom of beryllium, but it has one less valence electron than beryll
    5·2 answers
  • You have been posted to a remote region of space to monitor traffic. Near the end of a quiet shift, a spacecraft streaks past. Y
    13·1 answer
  • Distance = 6 km south<br><br> 60 minutes<br><br> What was the average velocity
    13·2 answers
  • ***PLEASE HELP WITH ANSWER AND EXPLANATION: Imagine the current in a current-carrying wire is flowing into the screen. What is t
    13·2 answers
  • The gravity tractor is a proposed spacecraft that will fly close to an asteroid whose trajectory threatens to impact the Earth.
    6·1 answer
  • 1. What is the primary difference between an ideal emf device and a real emf device? a) The electric potential of a real emf dev
    10·1 answer
  • Name 10 transition metals
    9·1 answer
  • Can someone please help me on thisss
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!