Answer:
v_2 = 2*v
Explanation:
Given:
- Mass of both charges = m
- Charge 1 = Q_1
- Speed of particle 1 = v
- Charge 2 = 4*Q_1
- Potential difference p.d = 10 V
Find:
What speed does particle #2 attain?
Solution:
- The force on a charged particle in an electric field is given by:
F = Q*V / r
Where, r is the distance from one end to another.
- The Net force acting on a charge accelerates it according to the Newton's second equation of motion:
F_net = m*a
- Equate the two expressions:
a = Q*V / m*r
- The speed of the particle in an electric field is given by third kinetic equation of motion.
v_f^2 - v_i^2 = 2*a*r
Where, v_f is the final velocity,
v_i is the initial velocity = 0
v_f^2 - 0 = 2*a*r
Substitute the expression for acceleration in equation of motion:
v_f^2 = 2*(Q*V / m*r)*r
v_f^2 = 2*Q*V / m
v_f = sqrt (2*Q*V / m)
- The velocity of first particle is v:
v = sqrt (20*Q / m)
- The velocity of second particle Q = 4Q
v_2 = sqrt (20*4*Q / m)
v_2 = 2*sqrt (20*Q / m)
v_2 = 2*v
Answer: B.) 6
Explanation:
To answer this problem you get the number of students who attended Wednesday (18) and the number of students who attended Tuesday (12) and subtract 18 - 12 = 6
Answer = B.) 6
Answer: Wavelength is the measure of the length of a complete wave cycle. The velocity of a wave is the distance traveled by a point on the wave. In general, for any wave the relation between Velocity and Wavelength is proportionate. It is expressed through the wave velocity formula.
Explanation: For any given wave, the product of wavelength and frequency gives the velocity. It is mathematically given by wave velocity formula written as-
V=f×λ
Where,
V is the velocity of the wave measure using m/s.
f is the frequency of the wave measured using Hz.
λ is the wavelength of the wave measured using m. Velocity and Wavelength Relation
Amplitude, Frequency, wavelength, and velocity are the characteristic of a wave. For a constant frequency, the wavelength is directly proportional to velocity.
Given by:
V∝λ
Example:
For a constant frequency, If the wavelength is doubled. The velocity of the wave will also double.
For a constant frequency, If the wavelength is made four times. The velocity of the wave will also be increased by four times.
Hope you understood the relation between wavelength and velocity of a wave. I truely hope this helps you out tho! Goodluck!
The energy from the sun that reaches the corn is about two billionths.