Rain that tends to fall in bands on earth is usually caused by : Warm, moist air rising and cooling
First, the water on earth evaporate due to sun's heat and formed cloud. Later on, this water condensed and fall again on the earth. Completing the water cycle
hope this helps
Let the mass of 2500 kg car be
and it's velocity be
and the mass of 1500 kg car be
and it's velocity be
.
After the bumping the mass be M and it's velocity be V.
By law of conservation of momentum we have

2500 * 5 + 1500 * 1=4000 * V
V = 14000/4000 = 7/2 = 3.5 m/s
So the velocity of the two-car train = 3.5 m/s
Answer:
(a) surface area of the plate will be equal to 
(b) Charge on the capacitor is equal to 
Explanation:
We have given spacing between the plates d = 0.05 mm = 
Value of capacitance 
(A) Capacitance of a parallel plate capacitor is equal to 
So 

So surface area of the plate will be equal to 
(B) It is given that capacitor is charged by 1.5 volt
So voltage V = 1.5 volt
Charge on the capacitor is equal to 
So 
Sure. The acceleration may be decreasing, but as long as it stays
in the same direction as the velocity, the velocity increases.
I think you meant to ask whether the body can have increasing velocity
with negative acceleration. That answer isn't simple either.
If the body's velocity is in the positive direction, then positive acceleration
means speeding up, and negative acceleration means slowing down.
BUT ... If the body's velocity is in the negative direction, then positive
acceleration means slowing down, and negative acceleration means
speeding up.
I know that's confusing.
-- Take a piece of scratch paper, write a 'plus' sign at one edge and
a 'minus' sign at the other edge. Those are the definitions of which
direction is positive and which direction is negative.
-- Then sketch some cars ... one traveling in the positive direction, and
one driving in the negative direction. Those are the directions of the
velocities.
-- Now, one car at a time:
. . . . . first push on the back of the car, in the direction it's moving;.
. . . . . then push on the front of the car, against its motion.
Each push causes the car to accelerate in the direction of the push.
When you see it on paper, all the positive and negative velocities
and accelerations will come clear for you.
force times gravity (FG) =mass times gravity (mg)