Answer:
oooh thats hard
Explanation:
well i would probaly search the page number or anthing on the page that should help
efficiency = (useful energy transferred ÷ energy supplied) × 100
It's easy to use this formula, but we have to know both the useful energy and the energy supplied. The drawing doesn't tell us the useful energy, so we have to find a clever way to figure it out. I see two ways to do it:
<u>Way #1:</u>
We all know about the law of conservation of energy. So we know that the total energy coming out must be 250J, because that's how much energy is going in. The wasted energy is 75J, so the rest of the 250J must be the useful energy . . . (250J - 75J) = 175J useful energy.
(useful energy) / (energy supplied) = (175J) / (250J) = <em>70% efficiency</em>
================================
<u>Way #2: </u>
How much of the energy is wasted ? . . . 75J wasted
What percentage of the Input is that 75J ? . . . 75/250 = 30% wasted
30% of the input energy is wasted. That leaves the other <em>70%</em> to be useful energy.
Answer:
v₁ = -0.8087 m / s
Explanation:
To solve this problem we can use the conservation of momentum, for this we define a system formed by the man, the skateboard and the brick, therefore the force during the separation is internal and the momentum is conserved
Initial instant. When they are united
p₀ = 0
Final moment. After throwing the brick
= (m_man + m_skate) v1 + m_brick v2
the moment is preserved
p₀ = p_{f}
0 = (m_man + m_skate) v₁ + m_brick v₂
v₁ = -
the negative sign indicates that the two speeds are in the opposite direction
let's calculate
v₁ = -
v₁ = -0.8087 m / s
Answer:
the weight of the object, the force of gravity acting on said object, and the mass of the object are needed for Newton's second law of motion.
Answer:
Option (A)
Explanation:
Diffusion is defined as the transfer of particles such as ions or molecules from a higher concentration region to a lower concentration region.
Osmosis is a special type of diffusion in which the solvents such as water are allowed to move from a region of higher to a lower concentration through a layer of a semi-permeable membrane. This is an energy-independent process and occurs along the concentration gradient.
Thus, the correct answer is option (A) that is true for both osmosis and diffusion.