<h2>
Its velocity when it crosses the finish line is 117.65 m/s</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = ?
Time, t = 6.8 s
Displacement, s = 1/4 mi = 400 meters
Substituting
s = ut + 0.5 at²
400 = 0 x 6.8 + 0.5 x a x 6.8²
a = 17.30 m/s²
Now we have equation of motion v = u + at
Initial velocity, u = 0 m/s
Final velocity, v = ?
Time, t = 6.8 s
Acceleration, a = 17.30 m/s²
Substituting
v = u + at
v = 0 + 17.30 x 6.8
v = 117.65 m/s
Its velocity when it crosses the finish line is 117.65 m/s
<span>D) Electromagnetic radiation travels in the form of longitudinal waves.</span>
<span>E=hc/wav. len
E = (6.62 x 10^-34 x 3 x 10^8)/0.0275 x 10^-9
E = 7.22182 x 10^-15 J
To convert to eV divide by 1.6 x 10^-19
E = 7.22182 x 10^-15/1.6 x 10^-19 eV
E =45.36 x 10^3 eV
Th energy, E, of a single x-ray photon in eV is = 45.36keV.
Number of photons, n = total energy/ energy of photon
n = 3.85 x 10^-6/7.22182 x 10^-15
n = 5.33 x 10^8 photons </span>